Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoav Noam is active.

Publication


Featured researches published by Yoav Noam.


The Journal of Neuroscience | 2009

Alternatively Spliced Isoforms of TRIP8b Differentially Control h Channel Trafficking and Function

Alan S. Lewis; Emily Schwartz; C. Savio Chan; Yoav Noam; Minyoung Shin; Wytse J. Wadman; D. James Surmeier; Tallie Z. Baram; Robert L. Macdonald; Dane M. Chetkovich

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) are the molecular basis for the current, Ih, which contributes crucially to intrinsic neuronal excitability. The subcellular localization and biophysical properties of h channels govern their function, but the mechanisms controlling these characteristics, and especially the potential role of auxiliary subunits or other binding proteins, remain unclear. We focused on TRIP8b, an h channel-interacting protein that colocalizes with HCN1 in cortical and hippocampal pyramidal neuron dendrites, and found that it exists in multiple alternative splice variants with distinct effects on h channel trafficking and function. The developmentally regulated splice variants of TRIP8b all shared dual, C terminus-located interaction sites with HCN1. When coexpressed with HCN1 in heterologous cells individual TRIP8b isoforms similarly modulated gating of Ih, causing a hyperpolarizing shift in voltage dependence of channel activation, but differentially upregulated or downregulated Ih current density and HCN1 surface expression. In hippocampal neurons, coexpression of TRIP8b isoforms with HCN1 produced isoform-specific changes of HCN1 localization. Interestingly, the TRIP8b isoforms most abundant in the brain are those predicted to enhance h channel surface expression. Indeed, shRNA knockdown of TRIP8b in hippocampal neurons significantly reduced native Ih. Thus, although TRIP8b exists in multiple splice isoforms, our data suggest that the predominant role of this protein in brain is to promote h channel surface expression and enhance Ih. Because Ih expression is altered in models of several diseases, including temporal lobe epilepsy, TRIP8b may play a role in both normal neuronal function and in aberrant neuronal excitability associated with neurological disease.


Current Opinion in Neurobiology | 2011

Towards an integrated view of HCN channel role in epilepsy

Yoav Noam; Christophe Bernard; Tallie Z. Baram

Epilepsy is the third most common brain disorder and affects millions of people. Epilepsy is characterized by the occurrence of spontaneous seizures, that is, bursts of synchronous firing of large populations of neurons. These are believed to result from abnormal regulation of neuronal excitability that favors hypersynchrony. Among the intrinsic conductances that govern neuronal excitability, the hyperpolarization-activated current (I(h)) plays complex and important roles in the fine-tuning of both cellular and network activity. Not surprisingly, dysregulation of I(h) and/or of its conducting ion-channels (HCN) has been strongly implicated in various experimental models of epilepsy, as well as in human epilepsy. Here we provide an overview of recent findings on the distinct physiological roles played by I(h) in specific contexts, and the cellular mechanisms that underlie these functions, including the subunit make-up of the channels. We further discuss current knowledge of dysregulation of I(h) and HCN channels in epilepsy in light of the multifaceted functions of I(h) in the brain.


Journal of Biological Chemistry | 2010

Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated channels in hippocampal neurons.

Yoav Noam; Qinqin Zha; Lise Phan; Rui Lin Wu; Dane M. Chetkovich; Wytse J. Wadman; Tallie Z. Baram

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated current Ih and thus play important roles in the regulation of brain excitability. The subcellular distribution pattern of the HCN channels influences the effects that they exert on the properties and activity of neurons. However, little is known about the mechanisms that control HCN channel trafficking to subcellular compartments or that regulate their surface expression. Here we studied the dynamics of HCN channel trafficking in hippocampal neurons using dissociated cultures coupled with time lapse imaging of fluorophore-fused HCN channels. HCN1-green fluorescence protein (HCN1-GFP) channels resided in vesicle-like organelles that moved in distinct patterns along neuronal dendrites, and these properties were isoform-specific. HCN1 trafficking required intact actin and tubulin and was rapidly inhibited by activation of either NMDA or AMPA-type ionotropic glutamate receptors in a calcium-dependent manner. Glutamate-induced inhibition of the movement of HCN1-GFP-expressing puncta was associated with increased surface expression of both native and transfected HCN1 channels, and this surface expression was accompanied by augmented Ih. Taken together, the results reveal the highly dynamic nature of HCN1 channel trafficking in hippocampal neurons and provide a novel potential mechanism for rapid regulation of Ih, and hence of neuronal properties, via alterations of HCN1 trafficking and surface expression.


Journal of Biological Chemistry | 2011

Trafficking and Gating of Hyperpolarization-activated Cyclic Nucleotide-gated Channels Are Regulated by Interaction with Tetratricopeptide Repeat-containing Rab8b-interacting Protein (TRIP8b) and Cyclic AMP at Distinct Sites

Ye Han; Yoav Noam; Alan S. Lewis; Johnie J. Gallagher; Wytse J. Wadman; Tallie Z. Baram; Dane M. Chetkovich

Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly with two distinct sites of HCN channel pore-forming subunits to control channel trafficking and gating. Here we use mutagenesis combined with electrophysiological studies to define and distinguish the functional importance of the HCN/TRIP8b interaction sites. Interaction with the last three amino acids of the HCN1 C terminus governed the effect of TRIP8b on channel trafficking, whereas TRIP8b interaction with the HCN1 cyclic nucleotide binding domain (CNBD) affected trafficking and gating. Biochemical studies revealed that direct interaction between TRIP8b and the HCN1 CNBD was disrupted by cAMP and that TRIP8b binding to the CNBD required an arginine residue also necessary for cAMP binding. In accord, increasing cAMP levels in cells antagonized the up-regulation of HCN1 channels mediated by a TRIP8b construct binding the CNBD exclusively. These data illustrate the distinct roles of the two TRIP8b-HCN interaction domains and suggest that TRIP8b and cAMP may directly compete for binding the HCN CNBD to control HCN channel gating, kinetics, and trafficking.


Molecular Psychiatry | 2018

NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience

Akanksha Singh-Taylor; Jenny Molet; S Jiang; Aniko Korosi; Jessica L. Bolton; Yoav Noam; K Simeone; Jessica L. Cope; Yuncai Chen; Ali Mortazavi; Tallie Z. Baram

Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.


Journal of Biological Chemistry | 2014

Filamin A promotes dynamin-dependent internalization of hyperpolarization-activated cyclic nucleotide-gated type 1 (HCN1) channels and restricts Ih in hippocampal neurons

Yoav Noam; Markus U. Ehrengruber; Annie Koh; Paul Feyen; Erik M. M. Manders; Geoffrey W. Abbott; Wytse J. Wadman; Tallie Z. Baram

Background: HCN channels influence neuronal excitability. Results: Filamin-A (FLNa) facilitated selective, reversible dynamin-dependent internalization of HCN1 and reduced Ih. In hippocampal neurons, dominant-negative FLNa enhanced native HCN1, and decoy peptides disrupting HCN1-FLNa binding reduced channel clustering and augmented endogenous Ih. Conclusion: FLNa modulates neuronal excitability via dynamin-mediated HCN1 endocytosis. Significance: Novel roles for FLNa in mature neuronal function are presented. The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response (“voltage-sag”) of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.


Epilepsia | 2010

Fever, febrile seizures and epileptogenesis

Céline M. Dubé; Shawn McClelland; ManKin Choy; Amy L. Brewster; Yoav Noam; Tallie Z. Baram

Febrile seizures (FS) are common and are associated with increased probability of temporal lobe epilepsy (TLE). However, whether FS can provoke TLE in the nonpredisposed brain is unknown. Using an immature rat model, we established that long FS cause TLE, and that duration of FS governed the severity of epilepsy. Epileptogenesis was accompanied, perhaps causally, by ion channel dysfunction and inflammatory changes. Because FS are a prevalent antecedent of TLE, studying the epileptogenesis that follows them provides powerful insight and potential therapies for epilepsy. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado‐Escueta AC, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at http://www.ncbi.nlm.nih.gov/books).


The Journal of Comparative Neurology | 2012

Distinct regional and subcellular localization of the actin-binding protein filamin A in the mature rat brain.

Yoav Noam; Lise Phan; Shawn McClelland; Erik M. M. Manders; Markus U. Ehrengruber; Wytse J. Wadman; Tallie Z. Baram; Yuncai Chen

Filamin A (FLNa) is an actin‐binding protein that regulates cell motility, adhesion, and elasticity by cross‐linking filamentous actin. Additional roles of FLNa include regulation of protein trafficking and surface expression. Although the functions of FLNa during brain development are well studied, little is known on its expression, distribution, and function in the adult brain. Here we characterize in detail the neuroanatomical distribution and subcellular localization of FLNa in the mature rat brain, by using two antisera directed against epitopes at either the N′ or the C′ terminus of the protein, further validated by mRNA expression. FLNa was widely and selectively expressed throughout the brain, and the intensity of immunoreactivity was region dependent. The most intensely FLNa‐labeled neurons were found in discrete neuronal systems, including basal forebrain structures, anterior nuclear group of thalamus, and hypothalamic parvocellular neurons. Pyramidal neurons in neocortex and hippocampus and magnocellular cells in basolateral amygdaloid nucleus were also intensely FLNa immunoreactive, and strong FLNa labeling was evident in the pontine and medullary raphe nuclei and in sensory and spinal trigeminal nuclei. The subcellular localization of FLNa was evaluated in situ as well as in primary hippocampal neurons. Punctate expression was found in somata and along the dendritic shaft, but FLNa was not detected in dendritic spines. These subcellular distribution patterns were recapitulated in hippocampal and neocortical pyramidal neurons in vivo. The characterization of the expression and subcellular localization of FLNa may provide new clues to the functional roles of this cytoskeletal protein in the adult brain. J. Comp. Neurol. 520:3013–3034, 2012.


Epilepsy & Behavior | 2013

Searching for new targets for treatment of pediatric epilepsy

Yoav Noam; Yogendra H. Raol; Gregory L. Holmes

The highest incidence of seizures in humans occurs during the first year of life. The high susceptibility to seizures in neonates and infants is paralleled by animal studies showing a high propensity to seizures during early life. The immature brain is highly susceptible to seizures because of an imbalance of excitation and inhibition. While the primary outcome determinant of early-life seizures is etiology, there is evidence that seizures which are frequent or prolonged can result in long-term adverse consequences, and there is a consensus that recurrent early-life seizures should be treated. Unfortunately, seizures in many neonates and children remain refractory to therapy. There is therefore a pressing need for new seizure drugs as well as antiepileptic targets in children. In this review, we focus on mechanisms of early-life seizures, such as hypoxia-ischemia, and novel molecular targets, including the hyperpolarization-activated cyclic nucleotide-gated channels.


Epilepsy Currents | 2010

Hyperpolarized views on the roles of the hyperpolarization-activated channels in neuronal excitability

Yoav Noam; Tallie Z. Baram

Upregulated H-Current in Hyperexcitable CA1 Dendrites after Febrile Seizures. Dyhrfjeld-Johnsen J, Morgan RJ, Csaba Foldy, Soltesz I., Front Cell Neurosci. 2008;2:2. doi:10.3389/neuro.03.002.2008. Somatic recordings from CA1 pyramidal cells indicated a persistent upregulation of the h-current (Ih) after experimental febrile seizures. Here, we examined febrile seizure-induced long-term changes in Ih and neuronal excitability in CA1 dendrites. Cell-attached recordings showed that dendritic Ih was significantly upregulated, with a depolarized half-activation potential and increased maximal current. Although enhanced Ih is typically thought to be associated with decreased dendritic excitability, whole-cell dendritic recordings revealed a robust increase in action potential firing after febrile seizures. We turned to computational simulations to understand how the experimentally observed changes in Ih influence dendritic excitability. Unexpectedly, the simulations, performed in three previously published CA1 pyramidal cell models, showed that the experimentally observed increases in Ih resulted in a general enhancement of dendritic excitability, primarily due to the increased Ih-induced depolarization of the resting membrane potential overcoming the excitability-depressing effects of decreased dendritic input resistance. Taken together, these experimental and modeling results reveal that, contrary to the exclusively anti-convulsive role often attributed to increased Ih in epilepsy, the enhanced Ih can co-exist with, and possibly even contribute to, persistent dendritic hyperexcitability following febrile seizures in the developing hippocampus. HCN Hyperpolarization-Activated Cation Channels Inhibit EPSPs by Interactions with M-type K+ Channels. George MS, Abbott LF, Siegelbaum SA. Nat Neurosci 2009;12(5):577–584. The processing of synaptic potentials by neuronal dendrites depends on both their passive cable properties and active voltage-gated channels, which can generate complex effects as a result of their nonlinear properties. We characterized the actions of HCN (hyperpolarization-activated cyclic nucleotide-gated cation) channels on dendritic processing of subthreshold excitatory postsynaptic potentials (EPSPs) in mouse CA1 hippocampal neurons. The HCN channels generated an excitatory inward current (Ih) that exerted a direct depolarizing effect on the peak voltage of weak EPSPs, but produced a paradoxical hyperpolarizing effect on the peak voltage of stronger, but still subthreshold, EPSPs. Using a combined modeling and experimental approach, we found that the inhibitory action of Ih was caused by its interaction with the delayed-rectifier M-type K+ current. In this manner, Ih can enhance spike firing in response to an EPSP when spike threshold is low and can inhibit firing when spike threshold is high.

Collaboration


Dive into the Yoav Noam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

ManKin Choy

University of California

View shared research outputs
Top Co-Authors

Avatar

Lise Phan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge