Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manli Wang is active.

Publication


Featured researches published by Manli Wang.


Journal of Molecular Cell Biology | 2014

Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform

Yun-Jia Ning; Manli Wang; Maping Deng; Shu Shen; Wei Liu; Wu-Chun Cao; Fei Deng; Yan-Yi Wang; Zhihong Hu; Hualin Wang

Abstract For antiviral signaling mediated by retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), the recruitment of cytosolic RLRs and downstream molecules (such as TBK1 and IKKε) to mitochondrial platform is a central event that facilitates the establishment of host antiviral state. Here, we present an example of viral targeting for immune evasion through spatial isolation of TBK1/IKKε from mitochondrial antiviral platform, which was employed by severe fever with thrombocytopenia syndrome virus (SFTSV), a deadly bunyavirus emerging recently. We showed that SFTSV nonstructural protein NSs functions as the interferon (IFN) antagonist, mainly via suppressing TBK1/IKKε–IRF3 signaling. NSs mediates the formation of cytoplasmic inclusion bodies (IBs), and the blockage of IB formation impairs IFN-inhibiting activity of NSs. We next demonstrate that IBs are utilized to compartmentalize TBK1/IKKε. The compartmentalization results in spatial isolation of the kinases from mitochondria, and deprived TBK1/IKKε may participate in antiviral complex assembly, leading to the blockage of IFN induction. This study proposes a new role of viral IBs as virus-built ‘jail’ for imprisoning cellular factors and presents a novel and likely common mechanism of viral immune evasion through spatial isolation of critical signaling molecules from the mitochondrial antiviral platform.


Journal of Virology | 2015

Disruption of Type I Interferon Signaling by the Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Virus via the Hijacking of STAT2 and STAT1 into Inclusion Bodies

Yun-Jia Ning; Kuan Feng; Yuan-Qin Min; Wu-Chun Cao; Manli Wang; Fei Deng; Zhihong Hu; Hualin Wang

ABSTRACT The type I interferon (IFN) system, including IFN induction and signaling, is the critical component of the host defense line against viral infection, which, in turn, is also a vulnerable target for viral immune evasion. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus. Previous data have shown that SFTSV can interfere with the early induction of type I IFNs through targeting host kinases TBK1/IKKε. In this study, we demonstrated that SFTSV also can suppress type I IFN-triggered signaling and interferon-stimulated gene (ISG) expression. Interestingly, we observed the significant inhibition of IFN signaling in cells transfected with the plasmids encoding the nonstructural protein (NSs) but not the nucleocapsid protein (NP), indicating the role of NSs as an antagonist of IFN signaling. Furthermore, coimmunoprecipitation (Co-IP) and pulldown assays indicated that NSs interacts with the cellular signal transducer and activator of transcription 2 (STAT2), and the DNA-binding domain of STAT2 may contribute to the NSs-STAT2 interaction. Combined with confocal microscopy analyses, we demonstrated that NSs sequesters STAT2 and STAT1 into viral inclusion bodies (IBs) and impairs IFN-induced STAT2 phosphorylation and nuclear translocation of both STATs, resulting in the inhibition of IFN signaling and ISG expression. SFTSV NSs-mediated hijacking of STATs in IBs represents a novel mechanism of viral suppression of IFN signaling, highlighting the role of viral IBs as the virus-built “jail” sequestering some crucial host factors and interfering with the corresponding cellular processes. IMPORTANCE SFTSV is an emerging bunyavirus which can cause a severe hemorrhagic fever-like disease with high case fatality rates in humans, posing a serious health threat. However, there are no specific antivirals available, and the pathogenesis and virus-host interactions are largely unclear. Here, we demonstrated that SFTSV can inhibit type I IFN antiviral signaling by the NSs-mediated hijacking of STAT2 and STAT1 into viral IBs, highlighting the interesting role of viral IBs in virus-host interactions as the virus-built jail. Sequestering signaling molecules into IBs represents a novel and, perhaps, also a general mechanism of viral suppression of IFN signaling, the understanding of which may benefit the study of viral pathogenesis and the development of antiviral therapies.


Journal of Virology | 2010

Autographa californica Multicapsid Nucleopolyhedrovirus Efficiently Infects Sf9 Cells and Transduces Mammalian Cells via Direct Fusion with the Plasma Membrane at Low pH

Sicong Dong; Manli Wang; Zhijuan Qiu; Fei Deng; Just M. Vlak; Zhihong Hu; Hualin Wang

ABSTRACT The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.


Journal of Virology | 2010

Specificity of Baculovirus P6.9 Basic DNA-Binding Proteins and Critical Role of the C Terminus in Virion Formation†

Manli Wang; Era Tuladhar; Shu Shen; Hualin Wang; Monique M. van Oers; Just M. Vlak; Marcel Westenberg

ABSTRACT The majority of double-stranded DNA (dsDNA) viruses infecting eukaryotic organisms use host- or virus-expressed histones or protamine-like proteins to condense their genomes. In contrast, members of the Baculoviridae family use a protamine-like protein named P6.9. The dephosphorylated form of P6.9 binds to DNA in a non-sequence-specific manner. By using a p6.9-null mutant of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), we demonstrate that P6.9 is not required for viral DNA replication but is essential for the production of infectious virus. Virion production was rescued by P6.9 homologs from a number of Alphabaculovirus species and one Gammabaculovirus species but not from the genus Betabaculovirus, comprising the granuloviruses, or by the P6.9 homolog VP15 from the unrelated white spot syndrome virus of shrimp. Mutational analyses demonstrated that AcMNPV P6.9 with a conserved 11-residue deletion of the C terminus was not capable of rescuing p6.9-null AcMNPV, while a chimeric Betabaculovirus P6.9 containing the P6.9 C-terminal region of an Alphabaculovirus strain was able to do so. This implies that the C terminus of baculovirus P6.9 contains sequence elements essential for virion formation. Such elements may possibly interact with species- or genus-specific domains of other nucleocapsid proteins during virus assembly.


Journal of Virology | 2008

The F-Like Protein Ac23 Enhances the Infectivity of the Budded Virus of gp64-Null Autographa californica Multinucleocapsid Nucleopolyhedrovirus Pseudotyped with Baculovirus Envelope Fusion Protein F

Manli Wang; Ying Tan; Feifei Yin; Fei Deng; Just M. Vlak; Zhihong Hu; Hualin Wang

ABSTRACT The GP64 and F proteins were previously identified as the sole functional envelope fusion proteins in Baculoviridae. F-like proteins, present only in group I nucleopolyhedroviruses (NPVs), are remnant, nonfunctional F proteins. In this report, we describe the effect of the presence or absence of the F-like protein Ac23 in a gp64-null Autographa californica multinucleocapsid NPV pseudotyped with the F protein from Spodoptera exigua multicapsid NPV (SeF). We found that the presence of Ac23 elevates the infectivity of the pseudotyped virus. This is in contrast to the results of Lung et al. (J. Virol. 76:5729-5736, 2002), who found no such effect. The possible reasons for the differing results are discussed.


Journal of Virology | 2010

Partial Functional Rescue of Helicoverpa armigera Single Nucleocapsid Nucleopolyhedrovirus Infectivity by Replacement of F Protein with GP64 from Autographa californica Multicapsid Nucleopolyhedrovirus

Manli Wang; Feifei Yin; Shu Shen; Ying Tan; Fei Deng; Just M. Vlak; Zhihong Hu; Hualin Wang

ABSTRACT Two distinct envelope fusion proteins (EFPs) (GP64 and F) have been identified in members of the Baculoviridae family of viruses. F proteins are found in group II nucleopolyhedroviruses (NPVs) of alphabaculoviruses and in beta- and deltabaculoviruses, while GP64 occurs only in group I NPVs of alphabaculoviruses. It was proposed that an ancestral baculovirus acquired the gp64 gene that conferred a selective advantage and allowed it to evolve into group I NPVs. The F protein is a functional analogue of GP64, as evidenced from the rescue of gp64-null Autographa californica multicapsid nucleopolyhedrovirus (MNPV) (AcMNPV) by F proteins from group II NPVs or from betabaculoviruses. However, GP64 failed to rescue an F-null Spodoptera exigua MNPV (SeMNPV) (group II NPV). Here, we report the successful generation of an infectious gp64-rescued group II NPV of Helicoverpa armigera (vHaBacΔF-gp64). Viral growth curve assays and quantitative real-time PCR (Q-PCR), however, showed substantially decreased infectivity of vHaBacΔF-gp64 compared to the HaF rescue control virus vHaBacΔF-HaF. Electron microscopy further showed that most vHaBacΔF-gp64 budded viruses (BV) in the cell culture supernatant lacked envelope components and contained morphologically aberrant nucleocapsids, suggesting the improper BV envelopment or budding of vHaBacΔF-gp64. Bioassays using pseudotyped viruses with a reintroduced polyhedrin gene showed that GP64-pseudotyped Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) significantly delayed the mortality of infected H. armigera larvae.


Journal of Virology | 2008

A Functional F Analogue of Autographa californica Nucleopolyhedrovirus GP64 from the Agrotis segetum Granulovirus

Feifei Yin; Manli Wang; Ying Tan; Fei Deng; Just M. Vlak; Zhihong Hu; Hualin Wang

ABSTRACT The envelope fusion protein F of Plutella xylostella granulovirus is a computational analogue of the GP64 envelope fusion protein of Autographa californica nucleopolyhedrovirus (AcMNPV). Granulovirus (GV) F proteins were thought to be unable to functionally replace GP64 in the AcMNPV pseudotyping system. In the present study the F protein of Agrotis segetum GV (AgseGV) was identified experimentally as the first functional GP64 analogue from GVs. AgseF can rescue virion propagation and infectivity of gp64-null AcMNPV. The AgseF-pseudotyped AcMNPV also induced syncytium formation as a consequence of low-pH-induced membrane fusion.


Journal of Virology | 2014

Unraveling the Entry Mechanism of Baculoviruses and Its Evolutionary Implications

Manli Wang; Jue Wang; Feifei Yin; Ying Tan; Fei Deng; Xinwen Chen; Johannes A. Jehle; Just M. Vlak; Zhihong Hu; Hualin Wang

ABSTRACT The entry of baculovirus budded virus into host cells is mediated by two distinct types of envelope fusion proteins (EFPs), GP64 and F protein. Phylogenetic analysis suggested that F proteins were ancestral baculovirus EFPs, whereas GP64 was acquired by progenitor group I alphabaculovirus more recently and may have stimulated the formation of the group I lineage. This study was designed to experimentally recapitulate a possible major step in the evolution of baculoviruses. We demonstrated that the infectivity of an F-null group II alphabaculovirus (Helicoverpa armigera nucleopolyhedrovirus [HearNPV]) can be functionally rescued by coinsertion of GP64 along with the nonfusogenic Fdef (furin site mutated HaF) from HearNPV. Interestingly, HearNPV enters cells by endocytosis and, less efficiently, by direct membrane fusion at low pH. However, this recombinant HearNPV coexpressing Fdef and GP64 mimicked group I virus not only in its EFP composition but also in its abilities to enter host cells via low-pH-triggered direct fusion pathway. Neutralization assays indicated that the nonfusogenic F proteins contribute mainly to binding to susceptible cells, while GP64 contributes to fusion. Coinsertion of GP64 with an F-like protein (Ac23) from group I virus led to efficient rescue of an F-null group II virus. In summary, these recombinant viruses and their entry modes are considered to resemble an evolutionary event of the acquisition of GP64 by an ancestral group I virus and subsequent adaptive inactivation of the original F protein. The study described here provides the first experimental evidence to support the hypothesis of the evolution of baculovirus EFPs.


Journal of General Virology | 2008

The F protein of Helicoverpa armigera single nucleopolyhedrovirus can be substituted functionally with its homologue from Spodoptera exigua multiple nucleopolyhedrovirus.

Manli Wang; Ying Tan; Feifei Yin; Fei Deng; Just M. Vlak; Zhihong Hu; Hualin Wang

F proteins of group II nucleopolyhedroviruses (NPVs) are envelope fusion proteins essential for virus entry and egress. An F-null Helicoverpa armigera single nucleocapsid NPV (HearNPV) bacmid, HaBacDeltaF, was constructed. This bacmid could not produce infectious budded virus (BV) when transfected into HzAM1 cells, showing that F protein is essential for cell-to-cell transmission of BVs. When HaBacDeltaF was pseudotyped with the homologous F protein (HaBacDeltaF-HaF, positive control) or with the heterologous F protein from Spodoptera exigua multinucleocapsid NPV (SeMNPV) (HaBacDeltaF-SeF), infectious BVs were produced with similar kinetics. In the late phase of infection, the BV titre of HaBacDeltaF-SeF virus was about ten times lower than that of HaBacDeltaF-HaF virus. Both pseudotyped viruses were able to fuse HzAM1 cells in a similar fashion. The F proteins of both HearNPV and SeMNPV were completely cleaved into F(1) and F(2) in the BVs of vHaBacDeltaF-HaF and vHaBacDeltaF-SeF, respectively, but the cleavage of SeF in vHaBacDeltaF-SeF-infected HzAM1 cells was incomplete, explaining the lower BV titre of vHaBacDeltaF-SeF. Polyclonal antisera against HaF(1) and SeF(1) specifically neutralized the infection of vHaBacDeltaF-HaF and vHaBacDeltaF-SeF, respectively. HaF(1) antiserum showed some cross-neutralization with vHaBacDeltaF-SeF. These results demonstrate that group II NPV F proteins can be functionally replaced with a homologue of other group II NPVs, suggesting that the interaction of F with other viral or host proteins is not absolutely species-specific.


Virology | 2012

ORF85 of HearNPV encodes the per os infectivity factor 4 (PIF4) and is essential for the formation of the PIF complex

Huachao Huang; Manli Wang; Fei Deng; Hualin Wang; Zhihong Hu

ORF85 of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) encodes a homologue of the per os infectivity factor 4 (PIF-4) of Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV). In this paper, the functions of HA85, particularly in relation to oral infection and interactions with other PIFs were investigated. An ha85-disrupted recombinant HearNPV was generated and resulted in a complete loss of oral infectivity. Western blotting and co-immunoprecipitation (Co-IP) analyses suggested PIF1, PIF2, and PIF3 assemble into a PIF complex in HearNPV ODV. Although Western blotting and Co-IP did not show that HA85 is associated with the PIF complex, further analysis revealed the inactivation of ha85 led to the disruption of PIF complex. Yeast two hybridization analyses revealed that HA85 interacts with P74, PIF1, PIF2 and PIF3. In conclusion, HA85 is identified as the PIF4 of HearNPV and is proposed to participate in the formation of HearNPV PIF complex via associations with other PIFs.

Collaboration


Dive into the Manli Wang's collaboration.

Top Co-Authors

Avatar

Zhihong Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hualin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Just M. Vlak

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Feifei Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dianhai Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shu Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge