Manminder Kaur
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manminder Kaur.
Molecular Pharmacology | 2007
Manminder Kaur; Joanna E. Chivers; Mark A. Giembycz; Robert Newton
Addition of an inhaled long-acting β2-adrenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) is more effective at improving asthma control and reducing exacerbations than increasing the dose of ICS. Given that LABA monotherapy is not anti-inflammatory, pathways may exist by which LABAs enhance ICS actions. In the current study, the glucocorticoid dexamethasone had no effect on β2-adrenoceptor agonist-induced cAMP-response element-dependent transcription in the human bronchial epithelial cell line BEAS-2B. In contrast, simple glucocorticoid response element (GRE)-dependent transcription induced by dexamethasone, budesonide, and fluticasone was synergistically enhanced by β2-adrenoceptor agonists, including salmeterol and formoterol, to a level that could not be achieved by glucocorticoid alone. This enhancement was mimicked by other cAMP-elevating agents, and a cAMP mimetic, and was blocked by an inhibitor of cAMP-dependent protein kinase (PKA). Thus, β2-adrenoceptor agonists synergistically enhance simple GRE-dependent transcription via the classical cAMP-PKA pathway. Consistent with the clinical situation, the addition of a β2-adrenoceptor agonist to a glucocorticoid is steroid-sparing in that maximal GRE-dependent responses, evoked by glucocorticoid, are achieved at ∼10-fold lower concentrations in the presence of β2-adrenoceptor agonist. Finally, analysis of dexamethasone-inducible genes, including glucocorticoid-inducible leucine zipper (GILZ), aminopeptidase N, FKBP51, PAI-1, tristetraprolin, DNB5, p57KIP2, metallothionein 1X, and MKP-1, revealed enhanced inducibility of some genes by glucocorticoid/β2-adrenoceptor agonist combinations in a manner that was consistent with the GRE-reporter. Because such effects also occur in primary human airway smooth muscle cells, we propose that enhancement of glucocorticoid-inducible gene expression may contribute to the superior efficacy of LABA/ICS combination therapies, over ICS alone, in asthma treatment.
British Journal of Pharmacology | 2009
Mark A. Giembycz; Manminder Kaur; Richard Leigh; Robert Newton
There is unequivocal evidence that the combination of an inhaled corticosteroid (ICS)—i.e. glucocorticoid—and an inhaled long‐acting β2‐adrenoceptor agonist (LABA) is superior to each component administered as a monotherapy alone in the clinical management of asthma. Moreover, Calverley and colleagues (Lancet 2003, 361: 449–456; N Engl J Med 2007, 356: 775–789) reporting for the ‘TRial of Inhaled STeroids ANd long‐acting β2‐agonists (TRISTAN)’ and ‘TOwards a Revolution in COPD Health (TORCH)’ international study groups also demonstrated the superior efficacy of LABA/ICS combination therapies over ICS alone in the clinical management of chronic obstructive pulmonary disease. This finding has been independently confirmed indicating that the therapeutic benefit of LABA/ICS combination therapies is not restricted to asthma and may be extended to other chronic inflammatory diseases of the airways. Despite the unquestionable benefit of LABA/ICS combination therapies, there is a vast gap in our understanding of how these two drugs given together deliver superior clinical efficacy. In this article, we review the history of LABA/ICS combination therapies and critically evaluate how these two classes of drugs might interact at the biochemical level to suppress pro‐inflammatory responses. Understanding the molecular basis of this fundamental clinical observation is a Holy Grail of current respiratory diseases research as it could permit the rational exploitation of this effect with the development of new ‘optimized’ LABA/ICS combination therapies.
Cellular Signalling | 2008
Neil S. Holden; Paul E. Squires; Manminder Kaur; Rosemary Bland; Carol E. Jones; Robert Newton
Since protein kinase C (PKC) isoforms are variously implicated in the activation of NF-kappaB, we have investigated the role of PKC in the activation of NF-kappaB-dependent transcription by the diacyl glycerol (DAG) mimetic, phorbol 12-myristate 13-acetate (PMA), and by tumour necrosis factor (TNF) alpha in pulmonary A549 cells. The PKC selective inhibitors, Ro31-8220, Gö6976, GF109203X and Gö6983, revealed no effect on TNFalpha-induced NF-kappaB DNA binding and a similar lack of effect on serine 32/36 phosphorylated IkappaBalpha and the loss of total IkappaBalpha indicates that activation of the core IKK-IkappaBalpha-NF-kappaB cascade by TNFalpha does not involve PKC. In contrast, differential sensitivity of an NF-kappaB-dependent reporter to Ro31-8220, Gö6976, GF109203X and Gö6983 (EC(50)s 0.46 microM, 0.34 microM, >10 microM and >10 microM respectively) suggests a role for protein kinase D in transcriptional activation by TNFalpha. Compared with TNFalpha, PMA weakly induces NF-kappaB DNA binding and this effect was not associated with serine 32/36 phosphorylation of IkappaBalpha. However, PMA-stimulated NF-kappaB DNA binding was inhibited by Ro31-8220 (10 microM), GF109203X (10 microM) and Gö6983 (10 microM), but not by Gö6976 (10 microM), suggesting a role for novel PKC isoforms. Furthermore, a lack of positive effect of calcium mobilising agents on both NF-kappaB DNA binding and on transcriptional activation argues against major roles for classical PKCs. This, combined with the ability of both GF109203X and Gö6983 to prevent enhancement of TNFalpha-induced NF-kappaB-dependent transcription by PMA, further indicates a role for novel PKCs in NF-kappaB transactivation. Finally, siRNA-mediated knockdown of PKCdelta and epsilon expression did not affect TNFalpha-induced NF-kappaB-dependent transcription. However, knockdown of PKCdelta expression significantly inhibited PMA-stimulated luciferase activity, whereas knockdown of PKCepsilon was without effect. Furthermore, combined knockdown of PKCdelta and epsilon revealed an increased inhibitory effect on PMA-stimulated NF-kappaB-dependent transcription suggesting that PMA-induced NF-kappaB-dependent transcription is driven by novel PKC isoforms, particularly PKCdelta and epsilon.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Manminder Kaur; Neil S. Holden; Sylvia M. Wilson; Maria B. Sukkar; Kian Fan Chung; Peter J. Barnes; Robert Newton; Mark A. Giembycz
In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.
Journal of Pharmacology and Experimental Therapeutics | 2013
Manminder Kaur; Dave Singh
Alveolar macrophages produce neutrophil chemoattractants; this cellular cross-talk contributes to neutrophilic airway inflammation in chronic obstructive pulmonary disease (COPD). We have investigated the chemotaxis cross-talk mechanisms between these cells using COPD alveolar macrophages. Using conditioned media from stimulated COPD alveolar macrophages, we investigated the relative contributions of growth-related oncogene (CXCL1), interleukin-8 (CXCL8), and regulated on activation normal T cell expressed and secreted (CCL5) to neutrophil chemotaxis and evaluated the effect of blocking the chemokine receptors CXCR1 and CXCR2 on chemotaxis caused by macrophage-conditioned media. Furthermore, we evaluated whether corticosteroid treatment of stimulated alveolar macrophages inhibited the chemotaxis ability of conditioned media. Alveolar macrophages isolated from COPD (n = 8) and smoker (S) (n = 8) lungs were treated with ultra-pure lipopolysaccharide in the presence and absence of dexamethasone (1 μM). Supernatants were used for neutrophil chemotaxis assays. SB656933 (2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-methyl-furan-2-yl)-propyl]amino]-3,4-dioxo-cyclobut-1-enylamino}-benzamide) (CXCR2 antagonist) and Sch527123 [1-(2-chloro-3-fluorophenyl)-3-(4-chloro-2-hydroxy-3-piperazin-1-ylsulfonylphenyl)urea, 3-(2-chloro-3-fluoro-phenyl)-1-(4-chloro-2-hydroxy-3-piperazin-1-ylsulfonyl-phenyl)urea] (dual CXCR1 and CXCR2 antagonist) and blocking antibodies for CXCL8, CXCL1, and CCL5 were assessed. Conditioned media caused neutrophil chemotaxis in COPD and smokers (60.5 and 79.9% of total cells, respectively). Dexamethasone did not significantly reduce neutrophil chemotaxis in COPD or S. SB656933 and Sch527123 inhibited chemotaxis in a concentration-dependent manner, with the dual antagonist Sch527123 causing greater inhibition of chemotaxis. CXCL8 antibody inhibited neutrophil chemotaxis to basal levels, although there was no significant effect of blocking either CXCL1 or CCL5 (P > 0.05). CXCL8 plays a major role in neutrophil chemotaxis caused by alveolar macrophage–derived conditioned media, and this is most effectively inhibited by dual antagonism of CXCR1 and CXCR2. Corticosteroids do not inhibit chemotaxis caused by macrophage-derived chemokines.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Nadia Moretto; Serena Bertolini; Claudia Iadicicco; Gessica Marchini; Manminder Kaur; Giorgia Volpi; Riccardo Patacchini; Dave Singh; Fabrizio Facchinetti
Interleukin-8 (IL-8/CXCL8) is an important neutrophil chemoattractant known to be elevated in the airways of cigarette smokers and in patients with chronic obstructive pulmonary disease (COPD). We examined the acute effect of aqueous cigarette smoke extract (CSE) on IL-8 expression in primary human pulmonary cells, in particular in normal human bronchial smooth muscle cells (HBSMCs). IL-8 mRNA levels increased upon CSE exposure in a concentration- and time-dependent manner, and such an effect was accompanied by IL-8 secretion. CSE-evoked elevation of IL-8 mRNA was mimicked by its component acrolein. Both CSE and acrolein induced p38 mitogen-activated protein kinase (MAPK) phosphorylation, accompanied by the phosphorylation of MAPK-activated kinase 2 (MK2), a known downstream substrate of the p38 MAPK, both in HBSMCs and in human airway epithelial cells. Furthermore, pharmacological inhibition of p38 MAPK or MK2 strongly accelerated the decay of IL-8 mRNA levels upon stimulation with CSE or acrolein and subsequent blockade of mRNA neosynthesis with actinomycin D in pulmonary structural cells (HBSMCs and airways epithelial cells) as well as in human alveolar macrophages. Conversely, pharmacological inhibition of ERK1/2 signaling inhibited CSE-induced steady-state levels of IL-8 mRNA without affecting mRNA stability, thus suggesting inhibition at the transcriptional level. In sum, p38 MAPK/MK2 signaling is an important posttranscriptional mechanism underlying upregulation of IL-8 mRNA levels elicited by CSE and acrolein. Given the pivotal role of IL-8 in neutrophil chemotaxis and activation, our results shed light on the mechanisms through which cigarette smoke can initiate inflammation in the lung.
European Respiratory Journal | 2013
Kate Gaffey; Sophie Reynolds; Jonathan Plumb; Manminder Kaur; Dave Singh
The p38 mitogen-activated protein kinase (MAPK) pathway is upregulated in chronic obstructive pulmonary disease (COPD). To date, dual labelling to identify cell-type-specific presence of phosphorylated (phospho-)p38 MAPK has not been carried out. Phospho-p38 MAPK was quantified in a variety of cell types in the lung tissue of 20 COPD patients, 12 smokers and 12 nonsmokers using immunohistochemistry. Paired blood and sputum neutrophils (from seven subjects with COPD), and CD8 and epithelial cells (from three subjects with COPD) were cultured with a p38 MAPK inhibitor. Supernatant tumour necrosis factor-α and CXCL8 levels were analysed by ELISA. Sputum and blood neutrophil cytospins were analysed for phospho-p38 MAPK. Phospho-p38 MAPK was increased in bronchial epithelial cells, macrophages and CD20+ and CD8+ lymphocytes in COPD lungs. Sputum and lung tissue neutrophils were devoid of phospho-p38 in all patient groups. The p38 MAPK inhibitor SB100 attenuated pro-inflammatory mediator release in COPD lung CD8 cells and airway epithelia, but there was no effect on COPD sputum neutrophils. Our data indicate cell-specific anti-inflammatory effects of p38 MAPK inhibition in the lung.
Journal of Pharmacology and Experimental Therapeutics | 2009
Elizabeth M. King; Manminder Kaur; Wei Gong; Christopher F. Rider; Neil S. Holden; Robert Newton
The mRNA-destabilizing protein tristetraprolin (TTP) negatively regulates adenine- and uridine-rich element (ARE)-containing mRNAs. In A549 pulmonary cells, TTP mRNA and both a ∼40- and a ∼45-kDa phosphorylated version of TTP protein were rapidly induced in response to interleukin (IL)-1β. Analysis with IκBαΔN, a dominant version of inhibitor of κBα (IκBα), as well as dominant-negative and small-molecule IκB kinase (IKK) inhibitors demonstrated that IL-1β-induced TTP is nuclear factor-κB (NF-κB)-dependent. Likewise, TTP expression and formation of the ∼45-kDa phosphorylated form of TTP are blocked by the p38 mitogen-activated protein kinase (MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580). By contrast, and despite a 3- to 4-fold induction of TTP mRNA, the anti-inflammatory glucocorticoid dexamethasone only modestly induced expression of the ∼40-kDa form of TTP. In the context of IL-1β, dexamethasone exerted a marginal repressive effect on TTP mRNA expression and more considerably reduced TTP protein. Given a requirement for p38 MAPK in the induction of TTP by IL-1β, this repressive effect may be explained by repression of the p38 MAPK pathway by dexamethasone. Knockdown of TTP protein by siRNA elevated IL-1β-induced expression of granulocyte macrophage–colony-stimulating factor (GM-CSF) and IL-8, demonstrating a role for TTP in feedback control. Likewise, knockdown of TTP increased GM-CSF expression in the presence of IL-1β plus dexamethasone, suggesting that feedback control by TTP also occurs in the context of IL-1β plus dexamethasone. Taken together, our data demonstrate that NF-κB and p38 MAPK are critical to the induction of TTP by IL-1β and that TTP induction provides feedback control of the ARE-containing genes GM-CSF and IL-8.
British Journal of Pharmacology | 2010
Neil S. Holden; Christopher F. Rider; Matthew J. Bell; J. Velayudhan; Elizabeth M. King; Manminder Kaur; M. Salmon; Mark A. Giembycz; Robert Newton
Background and purpose: Due to their potent bronchodilator properties, β2‐adrenoceptor agonists are a mainstay of therapy in asthma. However, the effects of β2‐adrenoceptor agonists on inflammation are less clear. Accordingly, we have investigated the effects of β2‐adrenoceptor agonists on inflammatory mediator release.
Mucosal Immunology | 2015
Toshifumi Fujimori; Aleksander M Grabiec; Manminder Kaur; Thomas J. Bell; Naoya Fujino; Peter C. Cook; Freya Svedberg; Andrew S. MacDonald; Rose A. Maciewicz; Dave Singh; Tracy Hussell
Much of the biology surrounding macrophage functional specificity has arisen through examining inflammation-induced polarizing signals, but this also occurs in homeostasis, requiring tissue-specific environmental triggers that influence macrophage phenotype and function. The TAM receptor family of receptor tyrosine kinases (Tyro3, Axl and MerTK) mediates the non-inflammatory removal of apoptotic cells by phagocytes through the bridging phosphatidylserine-binding molecules growth arrest-specific 6 (Gas6) or Protein S. We show that one such TAM receptor (Axl) is exclusively expressed on mouse airway macrophages, but not interstitial macrophages and other lung leukocytes, under homeostatic conditions and is constitutively ligated to Gas6. Axl expression is potently induced by granulocyte-macrophage colony-stimulating factor expressed in the healthy and inflamed airway, and by type I interferon or Toll-like receptor-3 stimulation on human and mouse macrophages, indicating potential involvement of Axl in apoptotic cell removal under inflammatory conditions. Indeed, an absence of Axl does not cause sterile inflammation in health, but leads to exaggerated lung inflammatory disease upon influenza infection. These data imply that Axl allows specific identification of airway macrophages, and that its expression is critical for macrophage functional compartmentalization in the airspaces or lung interstitium. We propose that this may be a critical feature to prevent excessive inflammation because of secondary necrosis of apoptotic cells that have not been cleared by efferocytosis.