Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manoj Gambhir is active.

Publication


Featured researches published by Manoj Gambhir.


Emerging Infectious Diseases | 2013

Duration of Immunity to Norovirus Gastroenteritis

Kirsten Simmons; Manoj Gambhir; Juan S. Leon; Ben Lopman

The duration of immunity to norovirus (NoV) gastroenteritis has been believed to be from 6 months to 2 years. However, several observations are inconsistent with this short period. To gain better estimates of the duration of immunity to NoV, we developed a mathematical model of community NoV transmission. The model was parameterized from the literature and also fit to age-specific incidence data from England and Wales by using maximum likelihood. We developed several scenarios to determine the effect of unknowns regarding transmission and immunity on estimates of the duration of immunity. In the various models, duration of immunity to NoV gastroenteritis was estimated at 4.1 (95% CI 3.2–5.1) to 8.7 (95% CI 6.8–11.3) years. Moreover, we calculated that children (<5 years) are much more infectious than older children and adults. If a vaccine can achieve protection for duration of natural immunity indicated by our results, its potential health and economic benefits could be substantial.


PLOS ONE | 2012

Understanding Reduced Rotavirus Vaccine Efficacy in Low Socio-Economic Settings

Benjamin A. Lopman; Virginia E. Pitzer; Rajiv Sarkar; Beryl Primrose Gladstone; Manish M. Patel; John W. Glasser; Manoj Gambhir; Christina Atchison; Bryan T. Grenfell; W. John Edmunds; Gagandeep Kang; Umesh D. Parashar

Introduction Rotavirus vaccine efficacy ranges from >90% in high socio-economic settings (SES) to 50% in low SES. With the imminent introduction of rotavirus vaccine in low SES countries, understanding reasons for reduced efficacy in these settings could identify strategies to improve vaccine performance. Methods We developed a mathematical model to predict rotavirus vaccine efficacy in high, middle and low SES based on data specific for each setting on incidence, protection conferred by natural infection and immune response to vaccination. We then examined factors affecting efficacy. Results Vaccination was predicted to prevent 93%, 86% and 51% of severe rotavirus gastroenteritis in high, middle and low SES, respectively. Also predicted was that vaccines are most effective against severe disease and efficacy declines with age in low but not high SES. Reduced immunogenicity of vaccination and reduced protection conferred by natural infection are the main factors that compromise efficacy in low SES. Discussion The continued risk of severe disease in non-primary natural infections in low SES is a key factor underpinning reduced efficacy of rotavirus vaccines. Predicted efficacy was remarkably consistent with observed clinical trial results from different SES, validating the model. The phenomenon of reduced vaccine efficacy can be predicted by intrinsic immunological and epidemiological factors of low SES populations. Modifying aspects of the vaccine (e.g. improving immunogenicity in low SES) and vaccination program (e.g. additional doses) may bring improvements.


PLOS Neglected Tropical Diseases | 2012

A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination

María-Gloria Basáñez; James S. McCarthy; Michael D. French; Guo-Jing Yang; Martin Walker; Manoj Gambhir; Roger K. Prichard; Thomas S. Churcher

Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches.


PLOS Neglected Tropical Diseases | 2010

Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study

Michael D. French; Thomas S. Churcher; Manoj Gambhir; Alan Fenwick; Joanne P. Webster; Narcis B. Kabatereine; María-Gloria Basáñez

Background To date schistosomiasis control programmes based on chemotherapy have largely aimed at controlling morbidity in treated individuals rather than at suppressing transmission. In this study, a mathematical modelling approach was used to estimate reductions in the rate of Schistosoma mansoni reinfection following annual mass drug administration (MDA) with praziquantel in Uganda over four years (2003–2006). In doing this we aim to elucidate the benefits of MDA in reducing community transmission. Methods Age-structured models were fitted to a longitudinal cohort followed up across successive rounds of annual treatment for four years (Baseline: 2003, Treatment: 2004–2006; n = 1,764). Instead of modelling contamination, infection and immunity processes separately, these functions were combined in order to estimate a composite force of infection (FOI), i.e., the rate of parasite acquisition by hosts. Results MDA achieved substantial and statistically significant reductions in the FOI following one round of treatment in areas of low baseline infection intensity, and following two rounds in areas with high and medium intensities. In all areas, the FOI remained suppressed following a third round of treatment. Conclusions/Significance This study represents one of the first attempts to monitor reductions in the FOI within a large-scale MDA schistosomiasis morbidity control programme in sub-Saharan Africa. The results indicate that the Schistosomiasis Control Initiative, as a model for other MDA programmes, is likely exerting a significant ancillary impact on reducing transmission within the community, and may provide health benefits to those who do not receive treatment. The results obtained will have implications for evaluating the cost-effectiveness of schistosomiasis control programmes and the design of monitoring and evaluation approaches in general.


Journal of the Royal Society Interface | 2013

Sensitivity analysis of infectious disease models: methods, advances and their application

Jianyong Wu; Radhika Dhingra; Manoj Gambhir; Justin V. Remais

Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design.


BMC Biology | 2010

Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis

Manoj Gambhir; Moses J. Bockarie; Daniel J. Tisch; James W. Kazura; Justin V. Remais; Robert C. Spear; Edwin Michael

BackgroundLarge-scale intervention programmes to control or eliminate several infectious diseases are currently underway worldwide. However, a major unresolved question remains: what are reasonable stopping points for these programmes? Recent theoretical work has highlighted how the ecological complexity and heterogeneity inherent in the transmission dynamics of macroparasites can result in elimination thresholds that vary between local communities. Here, we examine the empirical evidence for this hypothesis and its implications for the global elimination of the major macroparasitic disease, lymphatic filariasis, by applying a novel Bayesian computer simulation procedure to fit a dynamic model of the transmission of this parasitic disease to field data from nine villages with different ecological and geographical characteristics. Baseline lymphatic filariasis microfilarial age-prevalence data from three geographically distinct endemic regions, across which the major vector populations implicated in parasite transmission also differed, were used to fit and calibrate the relevant vector-specific filariasis transmission models. Ensembles of parasite elimination thresholds, generated using the Bayesian fitting procedure, were then examined in order to evaluate site-specific heterogeneity in the values of these thresholds and investigate the ecological factors that may underlie such variabilityResultsWe show that parameters of density-dependent functions relating to immunity, parasite establishment, as well as parasite aggregation, varied significantly between the nine different settings, contributing to locally varying filarial elimination thresholds. Parasite elimination thresholds predicted for the settings in which the mosquito vector is anopheline were, however, found to be higher than those in which the mosquito is culicine, substantiating our previous theoretical findings. The results also indicate that the probability that the parasite will be eliminated following six rounds of Mass Drug Administration with diethylcarbamazine and albendazole decreases markedly but non-linearly as the annual biting rate and parasite reproduction number increases.ConclusionsThis paper shows that specific ecological conditions in a community can lead to significant local differences in population dynamics and, consequently, elimination threshold estimates for lymphatic filariasis. These findings, and the difficulty of measuring the key local parameters (infection aggregation and acquired immunity) governing differences in transmission thresholds between communities, mean that it is necessary for us to rethink the utility of the current anticipatory approaches for achieving the elimination of filariasis both locally and globally.


PLOS ONE | 2008

Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis.

Manoj Gambhir; Edwin Michael

Background The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries—such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)—have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. Methodology/Principal Findings We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. Conclusions/Significance The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.


PLOS Computational Biology | 2015

A change in vaccine efficacy and duration of protection explains recent rises in pertussis incidence in the United States

Manoj Gambhir; Thomas A. Clark; Simon Cauchemez; Sara Y. Tartof; David L. Swerdlow; Neil M. Ferguson

Over the past ten years the incidence of pertussis in the United States (U.S.) has risen steadily, with 2012 seeing the highest case number since 1955. There has also been a shift over the same time period in the age group reporting the largest number of cases (aside from infants), from adolescents to 7–11 year olds. We use epidemiological modelling and a large case incidence dataset to explain the upsurge. We investigate several hypotheses for the upsurge in pertussis cases by fitting a suite of dynamic epidemiological models to incidence data from the National Notifiable Disease Surveillance System (NNDSS) between 1990–2009, as well as incidence data from a variety of sources from 1950–1989. We find that: the best-fitting model is one in which vaccine efficacy and duration of protection of the acellular pertussis (aP) vaccine is lower than that of the whole-cell (wP) vaccine, (efficacy of the first three doses 80% [95% CI: 78%, 82%] versus 90% [95% CI: 87%, 94%]), increasing the rate at which disease is reported to NNDSS is not sufficient to explain the upsurge and 3) 2010–2012 disease incidence is predicted well. In this study, we use all available U.S. surveillance data to: 1) fit a set of mathematical models and determine which best explains these data and 2) determine the epidemiological and vaccine-related parameter values of this model. We find evidence of a difference in efficacy and duration of protection between the two vaccine types, wP and aP (aP efficacy and duration lower than wP). Future refinement of the model presented here will allow for an exploration of alternative vaccination strategies such as different age-spacings, further booster doses, and cocooning.


American Journal of Epidemiology | 2014

Epidemiologic Implications of Asymptomatic Reinfection: A Mathematical Modeling Study of Norovirus

Ben Lopman; Kirsten Simmons; Manoj Gambhir; Jan Vinjé; Umesh D. Parashar

The pathogenicity of norovirus is definitively established. However, norovirus is frequently detected in the stool of healthy individuals. To gain understanding of the apparent high prevalence of asymptomatic infection, we analyzed a dynamic transmission model of norovirus infection, disease, and immunity. We simulated norovirus epidemiology in low- and high-transmission settings by varying the basic reproduction number (R0). We predicted annual disease incidence values in children aged 0-4 years of 25% with a low R0 and 29% with a high R0. However, the point prevalence of asymptomatic infection rose sharply from 3% to 48% from the low to high R0 settings. Among older children and adults, the models projected that incidence of disease would rise from 6% to 16% from the low to high R0 settings, whereas asymptomatic infection prevalence was lower in this age group. Asymptomatic prevalence of norovirus can change dramatically with small changes in R0. The ratio of prevalence in cases to controls could be high in a developed country and close to or even less than 1 in a high-exposure setting, despite similar disease incidence. These findings highlight an important limitation of case-control studies for pathogens for which there is suboptimal diagnostic specificity.


PLOS Neglected Tropical Diseases | 2009

Estimating Household and Community Transmission of Ocular Chlamydia trachomatis

Isobel M. Blake; Matthew J. Burton; Robin L. Bailey; Anthony W. Solomon; Sheila K. West; Beatriz Munoz; Martin J. Holland; David Mabey; Manoj Gambhir; María-Gloria Basáñez; Nicholas C. Grassly

Introduction Community-wide administration of antibiotics is one arm of a four-pronged strategy in the global initiative to eliminate blindness due to trachoma. The potential impact of more efficient, targeted treatment of infected households depends on the relative contribution of community and household transmission of infection, which have not previously been estimated. Methods A mathematical model of the household transmission of ocular Chlamydia trachomatis was fit to detailed demographic and prevalence data from four endemic populations in The Gambia and Tanzania. Maximum likelihood estimates of the household and community transmission coefficients were obtained. Results The estimated household transmission coefficient exceeded both the community transmission coefficient and the rate of clearance of infection by individuals in three of the four populations, allowing persistent transmission of infection within households. In all populations, individuals in larger households contributed more to the incidence of infection than those in smaller households. Discussion Transmission of ocular C. trachomatis infection within households is typically very efficient. Failure to treat all infected members of a household during mass administration of antibiotics is likely to result in rapid re-infection of that household, followed by more gradual spread across the community. The feasibility and effectiveness of household targeted strategies should be explored.

Collaboration


Dive into the Manoj Gambhir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin Michael

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

David L. Swerdlow

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin I. Meltzer

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge