Manon Carré
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manon Carré.
Nature Reviews Clinical Oncology | 2014
Nicolas André; Manon Carré; Eddy Pasquier
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
FEBS Letters | 2002
Nicolas André; Manon Carré; Gaël Brasseur; Bertrand Pourroy; Hervé Kovacic; Claudette Briand; Diane Braguer
We previously reported that paclitaxel acted directly on mitochondria isolated from human neuroblastoma SK‐N‐SH cells. Here, we demonstrate that the direct mitochondrial effect of paclitaxel observed in vitro is relevant in intact SK‐N‐SH cells. After a 2 h incubation with 1 μM paclitaxel, the mitochondria were less condensed. Paclitaxel (1 μM, 1–4 h) also induced a 20% increase in respiration rate and a caspase‐independent production of reactive oxygen species by mitochondria. The paclitaxel‐induced release of cytochrome c was detected only after 24 h of incubation, was caspase‐independent and permeability transition pore‐dependent. Thus, paclitaxel targets mitochondria upstream of caspase activation, early during the apoptotic process in intact human neuroblastoma cells.
Biochemical Pharmacology | 2002
Manon Carré; Gérard Carles; N. André; Soazig Douillard; Joseph Ciccolini; Claudette Briand; Diane Braguer
Arsenic trioxide (As(2)O(3)) at low concentrations (1-10 microM) is effective in the treatment of acute promyelocytic leukemia (APL) and lymphoma and is in clinical trials for treatment of solid tumors. Paclitaxel, an antimicrotubule agent, is highly efficacious in the treatment of adult tumors and is in clinical evaluation in childhood tumors. This study is the first to investigate the combination of arsenic and paclitaxel in the range of clinically achievable concentrations. We found that the simultaneous combination was antagonistic on proliferation of the neuroblastoma SK-N-SH cell line by using the combination index (CI) method. Moreover, a 40+/-5% decrease in paclitaxel-induced apoptosis in cells co-treated with As(2)O(3) confirmed the antagonism. The mechanism of antagonism was studied at the cellular level with 200 nM paclitaxel, twice the IC(50) value, and with 1 microM As(2)O(3) which administered singly did not affect cell survival or the microtubule network. As(2)O(3) antagonized the effects of paclitaxel on tubulin and microtubules. Paclitaxel-induced mitotic block was decreased by 20+/-2% and bundles induced by 200 nM paclitaxel were less condensed in the presence of 1 microM As(2)O(3). As(2)O(3) (10-200 microM) induced a concentration-dependent inhibition of tubulin polymerization in vitro which was maintained in presence of paclitaxel. Spectrophotometric and spectrofluorometric measurements indicated an interaction of As(2)O(3) with tubulin SH groups, without modification of the stoichiometry of paclitaxel binding to tubulin. Moreover, 4 microM As(2)O(3) inhibited the release of cytochrome c from isolated mitochondria by 78+/-10%. Our results show that As(2)O(3) and paclitaxel act antagonistically on mitochondria and microtubules and illustrate the need for careful evaluation of drug combinations.
Retrovirology | 2005
Jean de Mareuil; Manon Carré; Pascale Barbier; Grant R. Campbell; Sophie Lancelot; Sandrine Opi; Didier Esquieu; Jennifer Watkins; Charles Prevôt; Diane Braguer; Vincent Peyrot; Erwann Loret
BackgroundHIV infection and progression to AIDS is characterized by the depletion of T cells, which could be due, in part, to apoptosis mediated by the extra-cellular HIV-encoded Tat protein as a consequence of Tat binding to tubulin. Microtubules are tubulin polymers that are essential for cell structure and division. Molecules that target microtubules induce apoptosis and are potent anti-cancer drugs. We studied the effect on tubulin polymerization of three Tat variants: Tat HxB2 and Tat Eli from patients who are rapid progressors (RP) and Tat Oyi from highly exposed but persistently seronegative (HEPS) patients. We compared the effect on tubulin polymerization of these Tat variants and peptides corresponding to different parts of the Tat sequence, with paclitaxel, an anti-cancer drug that targets microtubules.ResultsWe show that Tat, and specifically, residues 38–72, directly enhance tubulin polymerization. We demonstrate that Tat could also directly trigger the mitochondrial pathway to induce T cell apoptosis, as shown in vitro by the release of cytochrome c from isolated mitochondria.ConclusionsThese results show that Tat directly acts on microtubule polymerization and provide insights into the mechanism of T cell apoptosis mediated by extra-cellular Tat.
Molecular Pharmacology | 2008
Naeem R Khawaja; Manon Carré; Hervé Kovacic; Marie-Anne Esteve; Diane Braguer
Among the new microtubule-targeted agents, the epothilone family of molecules has shown promising anticancer potential, and clinical trials are currently underway for patupilone (epothilone B) in various cancer indications. In this study, we characterized novel aspects of patupilones cellular action that may underlie its potent cytotoxicity in human neuroblastoma cells. Patupilone induced mitochondrial membrane potential collapse, mitochondrial morphological changes, and cytochrome c release, leading to apoptosis. Within the first 2 h, patupilone increased the generation of reactive oxygen species (ROS; i.e., superoxides and hydrogen peroxide, 33 ± 6 and 51 ± 3% increase, respectively), specifically from mitochondria. ROS scavengers and mitochondrial DNA depletion [ρ(-) cells] significantly protected cells against patupilone cytotoxicity, indicating that ROS generation is a key event in the initial phase of apoptosis. Although the Bim expression level was not modified by patupilone, this proapoptotic protein accumulated in the mitochondrial compartment (2.4-fold increase at IC70) after only a 6-h treatment. In contrast, Bax and Bcl-2 mitochondrial levels were not changed during treatment. It is noteworthy that ROS inhibition prevented Bim relocalization to mitochondria and mitochondrial membrane changes induced by patupilone. Altogether, our data reveal that patupilone-mediated ROS production by mitochondria initiates the intrinsic signaling cascade by inducing Bim accumulation in mitochondria. These results might explain the superior activity of patupilone in tumor cells compared with paclitaxel that is, until now, the clinical reference among microtubule-stabilizing agents. Furthermore, our data highlight the importance of mitochondria that simultaneously assume the role of activator and integrator of apoptotic signals triggered by patupilone.
Molecular Cancer Therapeutics | 2006
Marie-Anne Esteve; Manon Carré; Véronique Bourgarel-Rey; Anna Kruczynski; Giuseppina Raspaglio; Cristiano Ferlini; Diane Braguer
Vinflunine, a new microtubule-targeting drug, has a marked antitumor activity in vitro and in vivo. Here, we studied the mechanisms mediating resistance to vinflunine. We investigated the response to vinflunine of ovarian cancer cells initially selected as paclitaxel-resistant cells (A2780-TC1 cells). By comparison with A2780-wild-type (wt) cells, we showed that A2780-TC1 cells were highly resistant to vinflunine, with resistance factors reaching 800 and 1,830 for IC50 and IC70, respectively. We showed that P-glycoprotein minimally participated in this cell resistance. The examination of tubulin composition revealed increased levels of acetylated α-tubulin, βII-tubulin, and βIII-tubulin in A2780-TC1 cells before vinflunine treatment. As a consequence, vinflunine unequally affected microtubule network organization and function in A2780-wt and A2780-TC1 cells. Whereas the drug depolymerized microtubules and induced a mitotic block in A2780-wt cells, it did not depolymerize microtubules and induced a G2 block in A2780-TC1 cells. Elsewhere, the mitochondrial protein Bcl-2 was down-regulated in A2780-TC1 cells. This down-regulation was related to resistance, as A2780-TC1 cells stably transfected with a Bcl-2 construct recovered a partial sensitivity to vinflunine. Lastly, we confirmed the role played by Bcl-2 by showing that the mitochondrial membrane potential was only disrupted by vinflunine in cells expressing Bcl-2. Altogether, our results indicate that modifications acquired during treatment (i.e., paclitaxel) have significant consequences on cell response to the following drug (i.e., vinflunine). Especially, this study shows that a specific pool of tubulin subtypes and a down-regulation of Bcl-2 are associated with resistance of ovarian cancer cells to vinflunine. [Mol Cancer Ther 2006;5(11):2824–33]
Anti-Cancer Drugs | 2006
Céline Bressin; Véronique Bourgarel-Rey; Manon Carré; Bertrand Pourroy; Diego Arango; Diane Braguer; Yves Barra
The c-myc oncogene encodes for a transcriptional factor involved in many cellular processes such as proliferation, differentiation and apoptosis. According to these different functions, the role of c-Myc protein in cellular sensitivity to anti-cancer drugs is controversial. We defined the role of c-Myc in cancer cell sensitivity to vinblastine (VLB) using human colon cancer cells: LoVo wild-type or transfected with a plasmid containing the human c-myc gene in antisense orientation (LoVo-mycANS). Analysis of VLB cytotoxicity demonstrated a 3-fold increase in VLB sensitivity in LoVo-mycANS cells. Comparison between cells revealed different apoptosis kinetics: accumulation of cells in sub-G1 phase and poly(ADP-ribose) polymerase cleavage occurred earlier in LoVo-mycANS. Then, we demonstrated a mitochondrial membrane potential disruption followed by cytochrome c release that indicates the involvement of mitochondria in this apoptotic signaling pathway. This earlier apoptosis was accompanied by a Bcl-2 decrease and a p53 increase. In conclusion, the decrease in c-Myc expression enhanced the VLB sensitivity, triggering earlier apoptosis through induction of the intrinsic pathway. Thus, c-myc induction is a resistance factor and our findings suggest that tumors carrying low levels of c-Myc protein could be more responsive to vinca alkaloids treatment. Moreover, the downregulation of c-myc oncogene by an antisense strategy might represent a useful goal for improving the efficacy of this anti-neoplastic drug family.
Scientific Reports | 2017
Marion Le Grand; Raphael Berges; Eddy Pasquier; Marie-Pierre Montero; Laurence Borge; Alice Carrier; Sophie Vasseur; Véronique Bourgarel; Duje Buric; Nicolas André; Diane Braguer; Manon Carré
Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.
Oncotarget | 2017
María José Rico; María Virginia Baglioni; Maryna Bondarenko; Nahuel Cesatti Laluce; Viviana R. Rozados; Nicolas André; Manon Carré; O. Graciela Scharovsky; Mauricio Menacho Márquez
Discovery of new drugs for cancer treatment is an expensive and time-consuming process and the percentage of drugs reaching the clinic remains quite low. Drug repositioning refers to the identification and development of new uses for existing drugs and represents an alternative drug development strategy. In this work, we evaluated the antitumor effect of metronomic treatment with a combination of two repositioned drugs, metformin and propranolol, in triple negative breast cancer models. By in vitro studies with five different breast cancer derived cells, we observed that combined treatment decreased proliferation (P < 0.001), mitochondrial activity (P < 0.001), migration (P < 0.001) and invasion (P < 0.001). In vivo studies in immunocompetent mice confirmed the potential of this combination in reducing tumor growth (P < 0.001) and preventing metastasis (P < 0.05). Taken together our results suggest that metformin plus propranolol combined treatment might be beneficial for triple negative breast cancer control, with no symptoms of toxicity.
Archive | 2008
Manon Carré; Diane Braguer
Nowadays, molecules that affect microtubule functions, the so-called Microtubule-Damaging Agents (MDAs), constitute a class of anti-cancer drugs largely used in the clinics. Interest for MDAs is accompanied with advances in the fundamental understanding of their mechanism of action, including tumor cell death induction. MDAs have shown a high ability to induce apoptosis, programmed and tightly regulated cell death that is not or insufficiently activated in cancer cells. Here, the major intracellular signaling cascades responsible for apoptosis are first reviewed, focusing on the mitochondrial pathway. Then, the molecular and cellular mechanisms involved in the pro-apoptotic activity of MDAs are precised. Especially, the modulation of Bcl-2 family members that triggers mitochondrial membrane permeabilization is described, as well as the release of pro-apoptotic factors from the intermembrane space, and the final activation of caspases that leads to the biochemical destruction of the cell. Since MDAs inhibit microtubule functions and generally perturbate cell cycle progression, microtubule-linked proteins and cell-cycle progression regulators are proposed as candidates to control the apoptotic machinery. Other factors, such as MAPKs, stress markers, and survival factors, are also reviewed as modulators of the cell survival/death balance. Lastly, the direct effects of MDAs on mitochondria and the possible involvement of the tubulin/microtubule system in this phenomenon are discussed. Altogether, these data highlight the crucial role played by mitochondria in MDA-induced apoptosis, and propose that mitochondria should be investigated as a target of choice to improve cancer therapy.