Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manon Joseph is active.

Publication


Featured researches published by Manon Joseph.


International Journal of Systematic and Evolutionary Microbiology | 2008

Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring.

Olfa Haouari; Marie-Laure Fardeau; Jean-Luc Cayol; Corinne Casiot; Françoise Elbaz-Poulichet; Moktar Hamdi; Manon Joseph; Bernard Ollivier

A novel strictly anaerobic, moderately thermophilic, sulfate-reducing bacterium, designated strain Lam5(T), was isolated from a hot spring in north-east Tunisia and was characterized phenotypically and phylogenetically. The isolate stained Gram-negative but had a Gram-positive-type cell wall. The strain comprised endospore-forming, slightly curved rod-shaped cells with peritrichous flagella. It did not possess desulfoviridin. Strain Lam5(T) grew anaerobically at 40-60 degrees C (optimally at 55 degrees C) and at pH 5.8-8.2 (optimally at pH 7.1); it did not require NaCl but tolerated concentrations up to 1.5 % (w/v). It utilized lactate, pyruvate, formate, ethanol, butanol, glycerol, propanol and H(2) (plus acetate) as electron donors. Lactate was oxidized and pyruvate was fermented to acetate. Sulfate, sulfite, thiosulfate, As(V) and Fe(III) (but not elemental sulfur, fumarate, nitrate or nitrite) were used as electron acceptors. The G+C content of the genomic DNA was 46.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain Lam5(T) was a member of the genus Desulfotomaculum, with Desulfotomaculum putei as its closest relative (96 % similarity to the type strain). On the basis of genotypic, phenotypic and phylogenetic data, strain Lam5(T) represents a novel species of the genus Desulfotomaculum, for which the name Desulfotomaculum hydrothermale sp. nov. is proposed. The type strain is Lam5(T) (=DSM 18033(T) =JCM 13992(T)).


Microbial Ecology | 2012

Magnetotactic Bacteria in Microcosms Originating from the French Mediterranean Coast Subjected to Oil Industry Activities

Anne Postec; Nicolas Tapia; Alain Bernadac; Manon Joseph; Sylvain Davidson; Long-Fei Wu; Bernard Ollivier; Nathalie Pradel

Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.


Microbial Ecology | 2011

Bacterial Diversity Associated with Populations of Glossina spp. from Cameroon and Distribution within the Campo Sleeping Sickness Focus

Anne Geiger; Marie-Laure Fardeau; Flobert Njiokou; Manon Joseph; Tazoacha Asonganyi; Bernard Ollivier; Gérard Cuny

Tsetse flies were sampled in three villages of the Campo sleeping sickness focus in South Cameroon. The aim of this study was to investigate the flies’ gut bacterial composition using culture-dependent techniques. Out of the 32 flies analyzed (27 Glossina palpalis palpalis, two Glossina pallicera, one Glossina nigrofusca, and two Glossina caliginea), 17 were shown to be inhabited by diverse bacteria belonging to the Proteobacteria, the Firmicutes, or the Bacteroidetes phyla. Phylogenetic analysis based on 16S rRNA gene sequences indicated the presence of 16 bacteria belonging to the genera Acinetobacter (4), Enterobacter (4), Enterococcus (2), Providencia (1), Sphingobacterium (1), Chryseobacterium (1), Lactococcus (1), Staphylococcus (1), and Pseudomonas (1). Using identical bacterial isolation and identification processes, the diversity of the inhabiting bacteria analyzed in tsetse flies sampled in Cameroon was much higher than the diversity found previously in flies collected in Angola. Furthermore, bacterial infection rates differed greatly between the flies from the three sampling areas (Akak, Campo Beach/Ipono, and Mabiogo). Last, the geographic distribution of the different bacteria was highly uneven; two of them identified as Sphingobacterium spp. and Chryseobacterium spp. were only found in Mabiogo. Among the bacteria identified, several are known for their capability to affect the survival of their insect hosts and/or insect vector competence. In some cases, bacteria belonging to a given genus were shown to cluster separately in phylogenetic trees; they could be novel species within their corresponding genus. Therefore, such investigations deserve to be pursued in expanded sampling areas within and outside Cameroon to provide greater insight into the diverse bacteria able to infect tsetse flies given the severe human and animal sickness they transmit.


International Journal of Systematic and Evolutionary Microbiology | 2011

Caldilinea tarbellica sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin

Patrick Gregoire; Malek Bohli; Jean Luc Cayol; Manon Joseph; Sophie Guasco; Karine Dubourg; Jean Cambar; Valérie Michotey; Patricia Bonin; Marie-Laure Fardeau; Bernard Ollivier

An anaerobic, thermophilic, filamentous (0.45 × >100 µm) bacterium, designated D1-25-10-4(T), was isolated from a deep hot aquifer in France. Cells were non-motile and Gram-negative. Growth was observed at 43-65 °C (optimum 55 °C), at pH 6.8-7.8 (optimum pH 7.0) and with 0-5 g NaCl l(-1) (optimum 0 g NaCl l(-1)). Strain D1-25-10-4(T) was a chemo-organotroph and fermented ribose, maltose, glucose, galactose, arabinose, fructose, mannose, sucrose, raffinose, xylose, glycerol, fumarate, peptone, starch and xylan. Yeast extract was required for growth. Sulfate, thiosulfate, sulfite, elemental sulfur, nitrate, nitrite and fumarate were not used as terminal electron acceptors. The G+C content of the DNA was 61.9 mol%. The major cellular fatty acids of strain D1-25-10-4(T) were C(17 : 0), C(18 : 0,) C(16 : 0) and iso-C(17 : 0). The closest phylogenetic relative of strain D1-25-10-4(T) was Caldilinea aerophila STL-6-O1(T) (97.9 % 16S rRNA gene sequence similarity). DNA-DNA relatedness between strain D1-25-10-4(T) and Caldilinea aerophila DSM 14535(T) was 8.7 ± 1 %. On the basis of phylogenetic, genotypic and phenotypic characteristics, strain D1-25-10-4(T) represents a novel species within the genus Caldilinea, class Caldilineae, phylum Chloroflexi, for which the name Caldilinea tarbellica sp. nov. is proposed. The type strain is D1-25-10-4(T) ( = DSM 22659(T)  = JCM 16120(T)).


International Journal of Systematic and Evolutionary Microbiology | 2008

Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater.

Pierre-Pol Liebgott; Manon Joseph; Marie-Laure Fardeau; Jean-Luc Cayol; Enevold Falsen; Fatima Chamkh; Abdel-Illah Qatibi; Marc Labat

A moderately halophilic, strictly anaerobic bacterium, designated 37HS60(T), was isolated from an olive mill wastewater in southern Morocco (Marrakesh). The cells were straight, motile and stained Gram-positive, forming spherical and terminal spores and with an atypical thick and stratified multilayered cell wall. Major fatty acid components were iso-C17:1omega10c or anteiso-C17:1omega3c (19.3%), C14:0 (14.3%), C16:1omega7c (9.9%), C16:1omega7c DMA (8.5%) and C16:0 (7.6%). Strain 37HS60(T) grew from 20 to 50 degrees C with an optimum at 40-45 degrees C, and growth was observed from pH 5.5 to 8.5 with an optimum of 6.8. The salinity range for growth was 10-100 g NaCl l(-1) with an optimum at 50 g NaCl l(-1). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 37HS60(T) fell within the evolutionary radiation enclosed by cluster XII of the Clostridium subphylum. Strain 37HS60(T) exhibited highest 16S rRNA gene sequence similarity of 92.0% with Caloranaerobacter azorensis and 90.6% with Clostridium purinilyticum. Moreover, 37HS60(T) did not grow on basal medium with hexose or pentose sugars as carbon and energy sources. Pyruvate, fumarate and succinate were the best substrates for 37HS60(T) growth with 1.0 g yeast extract l(-1). The DNA G+C content was 33.0 mol%. Due to its phenotypic and genotypic characteristics, isolate 37HS60(T) is proposed as a novel species of a new genus, Clostridiisalibacter paucivorans gen. nov., sp. nov. The type strain is 37HS60(T) (=JCM 14354(T)=CCUG 53849(T)).


International Journal of Systematic and Evolutionary Microbiology | 2015

Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia)

Méline Bes; Mériem Merrouch; Manon Joseph; Marianne Quéméneur; Claude Payri; Bernard Pelletier; Bernard Ollivier; Marie-Laure Fardeau; Gaël Erauso; Anne Postec

A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).


Environmental Microbiology | 2017

Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria

Wajdi Ben Hania; Manon Joseph; Boyke Bunk; Cathrin Spröer; Hans-Peter Klenk; Marie-Laure Fardeau; Stefan Spring

The anaerobic, mesophilic and moderately halophilic strain L21-Spi-D4T was recently isolated from the suboxic zone of a hypersaline cyanobacterial mat using protein-rich extracts of Arthrospira (formerly Spirulina) platensis as substrate. Phylogenetic analyses based on 16S rRNA genes indicated an affiliation of the novel strain with the Bacteroidetes clade MgMjR-022, which is widely distributed and abundant in hypersaline microbial mats and heretofore comprised only sequences of uncultured bacteria. Analyses of the complete genome sequence of strain L21-Spi-D4T revealed a possible specialization on the degradation of cyanobacterial biomass. Besides genes for enzymes degrading specific cyanobacterial proteins a conspicuous transport complex for the polypeptide cyanophycin could be identified that is homologous to typical polysaccharide utilization loci of Bacteroidetes. A distinct and reproducible co-occurrence pattern of environmental 16S rRNA gene sequences of the MgMjR-022 clade and cyanobacteria in the suboxic zone of hypersaline mats points to a specific dependence of members of this clade on decaying cyanobacteria. Based on a comparative analysis of phenotypic, genomic and ecological characteristics we propose to establish the novel taxa Salinivirga cyanobacteriivorans gen. nov., sp. nov., represented by the type strain L21-Spi-D4T , and Salinivirgaceae fam. nov., comprising sequences of the MgMjR-022 clade.


International Journal of Systematic and Evolutionary Microbiology | 2012

Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake

M Mezghani; Didier Alazard; Fatma Karray; Jean Luc Cayol; Manon Joseph; Anne Postec; Marie Laure Fardeau; Jean-Luc Tholozan; Sami Sayadi

An obligatory anaerobic, moderately halophilic bacterium, designated strain CEJFG43(T), was isolated from a sample of sediment collected below the salt crust on the hypersaline El Jerid lake, in southern Tunisia. The cells of this novel strain were Gram-staining-negative, non-sporulating, motile, short rods. They grew in media with 6-30% (w/v) NaCl (optimum 15%), at 20-60 °C (optimum 45 °C) and at pH 5.5-9.5 (optimum pH 8.3). The micro-organism fermented glucose, fructose, ribose, raffinose, galactose, mannose, sucrose, maltose, xylose, mannitol, pyruvate and glycerol. The products of glucose fermentation were lactate, ethanol, acetate, H(2) and CO(2). The genomic G+C DNA content of strain CEJFG43(T) was 33.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CEJFG43(T) belonged in the genus Halanaerobacter and was most closely related to Halanaerobacter lacunarum DSM 6640(T) (95.3% gene sequence similarity) and Halanaerobacter chitinivorans DSM 9569(T) (95.3%). The predominant cellular fatty acids were non-branched (C(16:0) and C(16:1)). Based on the phylogenetic and phenotypic evidence, strain CEJFG43(T) represents a novel species in the genus Halanaerobacter for which the name Halanaerobacter jeridensis sp. nov. is proposed. The type strain is CEJFG43(T) ( = DSM 23230(T) = JCM 16696(T)).


International Journal of Systematic and Evolutionary Microbiology | 2015

Fusibacter bizertensis sp. nov., isolated from a corroded kerosene storage tank

Smii L; Ben Hania W; Jean-Luc Cayol; Manon Joseph; Moktar Hamdi; Bernard Ollivier; Marie-Laure Fardeau

Strain LTF Kr01(T), a novel mesophilic, anaerobic, halotolerant, rod-shaped bacterium, was isolated from a drain at the bottom of a corroded kerosene storage tank of the Société Tunisienne des Industries de Raffinage (STIR), Bizerte, northern Tunisia. Cells were Gram-positive-staining rods, occurred singly or in pairs, and were motile by one lateral flagellum. Strain LTF Kr01(T) grew at temperatures between 15 and 40 °C (optimum 30 °C), between pH 5.5 and 8.2 (optimum pH 7.2) and at NaCl concentrations between 0 and 50 g l(-1) (optimum 5 g l(-1)). It reduced thiosulfate and elemental sulfur into sulfide, but did not reduce sulfate or sulfite. It utilized a wide range of carbohydrates (cellobiose, d-glucose, d-fructose, d-mannitol, d-ribose, sucrose, d-xylose, maltose, d-galactose, starch and trehalose) and produced acetate, CO2 and H2 as end products from glucose fermentation. The DNA G+C content was 37.4 mol%. The predominant cellular fatty acids were C14:0 and C16:0. Phylogenetic analysis of the 16S rRNA gene sequence suggested that Fusibacter tunisiensis was the closest relative of strain LTF Kr01(T) (gene sequence similarity of 94.6%). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain LTF Kr01(T) is proposed to represent a novel species of the genus Fusibacter, order Clostridiales, for which the name Fusibacter bizertensis sp. nov. is proposed. The type strain is LTF Kr01(T) ( = DSM 28034(T) = JCM 19376(T)).


International Journal of Systematic and Evolutionary Microbiology | 2014

Halomonas olivaria sp. nov., a moderately halophilic bacterium isolated from olive-processing effluents.

Agnès Amouric; Pierre-Pol Liebgott; Manon Joseph; Céline Brochier-Armanet; Jean Lorquin

A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17(T) was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0-25 % (w/v) NaCl (optimum, 7 %), at pH 5-11 (optimum, pH 7.0) and at 4-50 °C (optimally at 35 °C). It accumulated poly-β-hydroxyalkanoate granules and produced exopolysaccharides. The predominant fatty acids were C18 : 1ω7c, C16 : 1ω7c and C16 : 0. Ubiquinone 9 (Q-9) was the only respiratory quinone. The DNA G+C content of TYRC17(T) was 53.9 mol%. Phylogenetic analyses of 16S rRNA gene sequences revealed that the strain represents a member of the genus Halomonas and more precisely of the subgroup containing Halomonas sulfidaeris, H. titanicae, H. variabilis, H. zhanjiangensis, H. alkaliantarctica, H. boliviensis and H. neptunia. TYRC17(T) showed high 16S-rRNA sequence identities in particular with the three last species listed (99.4-99.5 %). A multilocus sequence analysis (MLSA) using the 23S rRNA, gyrB, rpoD and secA genes allowed clarifying the phylogenetic position of TYRC17(T). This, combined with the level of DNA-DNA hybridization between TYRC17(T) and its closest relatives ranging from 21.6 % to 48.4 %, indicated that TYRC17(T) did not represent any of these species. On the basis of phenotypic and genotypic characteristics, and also genomic and phylogenetic evidence, it was concluded that strain TYRC17(T) represented a novel species of the genus Halomonas. The name Halomonas olivaria sp. nov. is proposed with TYRC17(T) ( = DSM 19074(T) = CCUG 53850B(T)) as the type strain.

Collaboration


Dive into the Manon Joseph's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Bonin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Sophie Guasco

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Postec

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Luc Cayol

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Cayol

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge