Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manoocher Soleimani is active.

Publication


Featured researches published by Manoocher Soleimani.


Biochimica et Biophysica Acta | 2001

Molecular and functional characterization of sodium--hydrogen exchanger in skin as well as cultured keratinocytes and melanocytes.

Rangaprasad Sarangarajan; Holli Shumaker; Manoocher Soleimani; Caroline Le Poole; Raymond E. Boissy

The sodium--hydrogen (Na(+)/H(+)) exchanger is one of the few transporter proteins involved in the regulation and maintenance of intracellular pH and cell volume in most eukaryotic cell types. The current study investigates the expression of isoforms of the Na(+)/H(+) exchanger (NHE) in human skin and in cultured keratinocytes, melanocytes, and melanoma cells by reverse transcription-polymerase chain reaction (RT--PCR), immunohistochemical analysis and functional studies. Neonatal foreskins were used to isolate RNA from epidermis and dermis, and to initiate cultures of keratinocytes and melanocytes. RT--PCR on RNA isolated from epidermis, dermis, keratinocytes, melanocytes and melanoma cells using PCR primers specific for NHE-1 yielded a 463 bp PCR product. RT--PCR performed using primers specific for NHE isoforms 2, 3, 4 and 5 did not yield any products. Western blotting analysis (of keratinocyte and melanocyte cell cultures) and indirect immunohistochemistry on neonatal foreskin, keratinocytes, melanocytes and melanoma cells using a NHE-1-specific polyclonal antibody demonstrated NHE-1 expression at the protein level. Physiological regulation of intracellular pH using a pH-sensitive dye, BCECF, detected an amiloride-sensitive NHE activity in human keratinocyte, melanocyte and melanoma cell cultures. These results indicate that cultures of human keratinocytes and melanocytes established from human skin and melanoma cells express the NHE-1 isoform of the sodium--hydrogen exchanger.


Pflügers Archiv: European Journal of Physiology | 2013

Slc26a11 is prominently expressed in the brain and functions as a chloride channel: Expression in Purkinje cells and stimulation of v H+-ATPase

Negah Rahmati; Karl Kunzelmann; Jie Xu; Sharon Barone; Lalida Sirianant; Chris I. De Zeeuw; Manoocher Soleimani

SLC26A11 (human)/Slc26a11 (mouse), also known as kidney brain anion transporter (KBAT), is a member of the SLC26 anion transporter family and shows abundant mRNA expression in the brain. However, its exact cellular distribution and subcellular localization in the brain and its functional identity and possible physiological roles remain unknown. Expression and immunostaining studies demonstrated that Slc26a11 is abundantly expressed in the cerebellum, with a predominant expression in Purkinje cells. Lower expression levels were detected in hippocampus, olfactory bulb, cerebral cortex, and subcortical structures. Patch clamp studies in HEK293 cells transfected with mouse cDNA demonstrated that Slc26a11 can function as a chloride channel that is active under basal conditions and is not regulated by calcium, forskolin, or co-expression with cystic fibrosis transmembrane regulator. Single and double immunofluorescent labeling studies demonstrated the localization of vacuolar (V) H+-ATPase and Slc26a11 (KBAT) in the plasma membrane in Purkinje cells. Functional studies in HEK293 cells indicated that transfection with Slc26a11 stimulated acid transport via endogenous V H+-ATPase. We conclude that Slc26a11 (KBAT) is prominently distributed in output neurons of various subcortical and cortical structures in the central nervous system, with specific expression in Purkinje cells and that it may operate as a chloride channel regulating acid translocation by H+-ATPase across the plasma membrane and in intracellular compartments.


Nephrology Dialysis Transplantation | 2012

Deletion of the Cl−/HCO3− exchanger pendrin downregulates calcium-absorbing proteins in the kidney and causes calcium wasting

Sharon Barone; Hassane Amlal; Jie Xu; Manoocher Soleimani

BACKGROUND The epithelial calcium channel (ECaC) (TRPV5) and the Cl-/HCO3- exchanger pendrin (SLC26A4) are expressed on the apical membrane of tubular cells in the distal nephron and play essential roles in calcium re-absorption and bicarbonate secretion, respectively, in the kidney. METHODS A combination of functional and molecular biology techniques were employed to examine the role of pendrin deletion in calcium excretion. RESULTS Here, we demonstrate that deletion of pendrin causes acidic urine [urine pH 4.9 in knockout (KO) versus 5.9 in wild-type (WT) mice, P<0.03)] and downregulates the calcium-absorbing molecules ECaC and Na/Ca exchanger in the kidney, as shown by northern hybridization, immunoblot analysis and/or immunofluorescent labeling. These changes were associated with a ∼100% increase in 24-h urine calcium excretion in pendrin null mice. Subjecting the pendrin WT and KO mice to oral bicarbonate loading for 12 days increased the urine pH to ∼8 in both genotypes, normalized the expression of ECaC and Na/Ca exchanger and reduced the urine calcium excretion in pendrin-null mice to levels comparable to WT mice. CONCLUSIONS We suggest that pendrin dysfunction should be suspected and investigated in humans with an otherwise unexplained acidic urine and hypercalciuria.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury

Kamyar Zahedi; Sharon Barone; Jie Xu; Nora Steinbergs; Rebecca Schuster; Alex B. Lentsch; Hassane Amlal; Jiang Wang; Robert A. Casero; Manoocher Soleimani

Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.


Journal of Biological Chemistry | 2016

Overexpression of miR-223 Tips the Balance of Pro- and Anti-Hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy.

Liwang Yang; Yutian Li; Xiaohong Wang; Xingjiang Mu; Dongze Qin; Wei Huang; Saeed Alshahrani; Michelle L. Nieman; Jiangtong Peng; Kobina Essandoh; Tianqing Peng; Yigang Wang; John N. Lorenz; Manoocher Soleimani; Zhi-Qing Zhao; Guo-Chang Fan

MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3′-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt. Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue.


Amino Acids | 2014

Modulation of polyamine metabolic flux in adipose tissue alters the accumulation of body fat by affecting glucose homeostasis

Chunli Liu; Oscar Perez-Leal; Carlos A. Barrero; Kamyar Zahedi; Manoocher Soleimani; Carl W. Porter; Salim Merali

The continued rise in obesity despite public education, awareness and policies indicates the need for mechanism-based therapeutic approaches to help control the disease. Our data, in conjunction with other studies, suggest an unexpected role for the polyamine catabolic enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in fat homeostasis. Our previous studies showed that deletion of SSAT greatly exaggerates weight gain and that the transgenic overexpression suppresses weight gain in mice on a high-fat diet. This discovery is substantial but the underlying molecular linkages are only vaguely understood. Here, we used a comprehensive systems biology approach, on white adipose tissue (WAT), to discover that the partition of acetyl-CoA towards polyamine catabolism alters glucose homeostasis and hence, fat accumulation. Comparative proteomics and antibody-based expression studies of WAT in SSAT knockout, wild type and transgenic mice identified nine proteins with an increasing gradient across the genotypes, all of which correlate with acetyl-CoA consumption in polyamine acetylation. Adipose-specific SSAT knockout mice and global SSAT knockout mice on a high-fat diet exhibited similar growth curves and proteomic patterns in their WAT, confirming that attenuated consumption of acetyl-CoA in acetylation of polyamines in adipose tissue drives the obese phenotype of these mice. Analysis of protein expression indicated that the identified changes in the levels of proteins regulating acetyl-CoA consumption occur via the AMP-activated protein kinase pathway. Together, our data suggest that differential expression of SSAT markedly alters acetyl-CoA levels, which in turn trigger a global shift in glucose metabolism in adipose tissue, thus affecting the accumulation of body fat.


The Journal of Membrane Biology | 2009

Sequence- or position-specific mutations in the carboxyl-terminal FL motif of the kidney sodium bicarbonate cotransporter (NBC1) disrupt its basolateral targeting and α-helical structure

Hong C. Li; Joel H. Collier; Ali Shawki; Jai S. Rudra; Emily Y. Li; Bryan Mackenzie; Manoocher Soleimani

The sodium-bicarbonate cotransporter NBC1 is targeted exclusively at the basolateral membrane. Mutagenesis of a dihydrophobic FL motif (residues 1013–1014) in the C-terminal domain disrupts the targeting of NBC1. In the present study, we determined the precise constraints of the FL motif required for basolateral targeting of NBC1 by expressing epitope-tagged wild-type and mutant NBC1 in MDCK cells and RNA-injected Xenopus oocytes and examining their subcellular localization. We assayed the functional activity of the mutants by measuring bicarbonate-induced currents in oocytes. Wild-type NBC1 (containing PFLS) was expressed exclusively on the basolateral membrane in MDCK cells. Reversal of the FL motif (PLFS) had no effect on basolateral targeting or activity. Shifting the FL motif one residue upstream (FLPS) resulted in mistargeting of the apical membrane but the FLPS mutant retained its functional activity in oocytes. Shifting the FL motif one residue downstream resulted in a mutant (PSFL) that did not efficiently translocate to the plasma membrane and was instead colocalized with the ER marker, protein disulfide isomerase (PDI). Analysis of circular dichroism (CD) revealed that a short peptide, 20 amino acid residues, of wild-type NBC1 contained a significant α-helical structure, whereas peptides in which the FL motif was reversed or C-terminally shifted were disordered. We therefore propose that the specific orientation and the precise location of the FL motif in the primary sequence of NBC1 are strict requirements for the α-helical structure of the C-terminal cytoplasmic domain and for targeting of NBC1 to the basolateral membrane.


PLOS ONE | 2014

Proximal tubule epithelial cell specific ablation of the spermidine/spermine N1-acetyltransferase gene reduces the severity of renal ischemia/reperfusion injury.

Kamyar Zahedi; Sharon Barone; Yang Wang; Tracy Murray-Stewart; Prabir Roy-Chaudhury; Roger D. Smith; Robert A. Casero; Manoocher Soleimani

Background Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia/reperfusion (I/R) injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved. Methods Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko) subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches. Results Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko- compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR) 2 and 4 were also reduced in PT-SSAT-Cko- compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals. Conclusions Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.


Methods of Molecular Biology | 2011

Spermidine/Spermine-N 1 -Acetyltransferase in Kidney Ischemia Reperfusion Injury

Kamyar Zahedi; Manoocher Soleimani

Ischemic reperfusion injuries such as acute renal failure, acute liver failure, stroke, and myocardial infarction are prevalent causes of morbidity and mortality. Kidney ischemic reperfusion injury is the leading cause of acute renal failure and dysfunction of transplanted kidneys. Although significant progress has been made in deciphering the factors that contribute to ischemic reperfusion injury, treatment options for these injuries remain scant. Identifying the molecules that contribute to ischemic reperfusion injury and can be therapeutically targeted will lead to development of new approaches for the treatment of such injuries. The expression of spermidine/spermine-N¹-acetyltransferase increases in the kidneys subjected to ischemic reperfusion injury. Furthermore, inactivation of the spermidine/spermine-N¹-acetyltransferase gene reduces the severity of kidney damage after ischemic reperfusion injury. Enhanced expression of spermidine/spermine-N¹-acetyltransferase in cultured cells leads to DNA damage, cell cycle arrest, and disruption of cell matrix interactions. The aforementioned observations strongly suggest that enhanced polyamine back conversion plays an important role in the mediation of tissue damage in renal Ischemic reperfusion injury.


Metabolism-clinical and Experimental | 2018

Spermidine/spermine N1-acetyltransferase-mediated polyamine catabolism regulates beige adipocyte biogenesis.

Fang Yuan; Lin Zhang; Yang Cao; Wei Gao; Can Zhao; Yuan Fang; Kamyar Zahedi; Manoocher Soleimani; Xiang Lu; Zhuyuan Fang; Qin Yang

OBJECTIVE Cold and β3-adrenergic receptor (AR) agonists activate beige adipocyte biogenesis in white adipose tissue (WAT). The two stimuli also induce expression of inflammatory cytokines in WAT. The low-grade inflammation may further promote WAT browning. However, the mechanisms to reconcile these two biological processes remain to be elucidated. In this study, we aim to investigate the roles of the rate-limiting polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SAT1) in regulating beige adipocyte biogenesis and inflammation. METHODS Adipose-specific SAT1 knockout mice (SAT1-aKO) were generated by crossing adiponectin-cre to SAT1-lox/lox mice. Metabolic phenotype was investigated. Primary pre-adipocytes were isolated from inguinal WAT (iWAT) and differentiated to adipocytes for studying beige adipocyte biogenesis. RESULT The expression and enzymatic activity of SAT1 were up-regulated in iWAT upon cold and β3-AR stimulation. SAT1-aKO mice developed late-onset obesity on a high-fat diet with impaired cold-induced beige adipocyte biogenesis and energy expenditure. RNA-seq analysis of iWAT from cold-challenged SAT1-aKO mice revealed that, in addition to beige adipocyte biogenesis signatures, the immune response markers were highly enriched among reduced genes. In cultured adipocytes, SAT1 overexpression or pharmacological activation with N1, N11-diethylnorspermine (DENSpm) elevated oxygen consumption and increased the expression of beige adipocyte marker UCP1 and PGC-1α. DENSpm treatment of adipocytes also increased the expression of inflammatory genes. SAT1 activation enhanced hydrogen peroxide production in adipocytes. Antioxidant N-acetylcysteine abrogated the elevated UCP1 expression and reversed some inflammatory genes induced by SAT1 activation. CONCLUSIONS SAT1 activation plays a key role in cold and β3-AR agonist-induced beige adipocyte biogenesis and low-grade inflammation.

Collaboration


Dive into the Manoocher Soleimani's collaboration.

Top Co-Authors

Avatar

Sharon Barone

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Hassane Amlal

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Kamyar Zahedi

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Jie Xu

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Gary E. Shull

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaohui Wang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John N. Lorenz

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge