Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manos Perros is active.

Publication


Featured researches published by Manos Perros.


Antimicrobial Agents and Chemotherapy | 2005

Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

Patrick Dorr; Mike Westby; Susan Dobbs; Paul Griffin; Becky Irvine; Malcolm Macartney; Julie Mori; Graham Rickett; Caroline Smith-Burchnell; Carolyn Napier; Robert G. Webster; Duncan Robert Armour; David A. Price; Blanda Luzia Christa Stammen; Anthony Wood; Manos Perros

ABSTRACT Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 μM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.


Journal of Virology | 2007

Reduced Maximal Inhibition in Phenotypic Susceptibility Assays Indicates that Viral Strains Resistant to the CCR5 Antagonist Maraviroc Utilize Inhibitor-Bound Receptor for Entry

Mike Westby; Caroline Smith-Burchnell; Julie Mori; Marilyn Lewis; Michael Mosley; Mark Stockdale; Patrick Dorr; Giuseppe Ciaramella; Manos Perros

ABSTRACT Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Δ32/Δ32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.


Journal of Virology | 2006

Emergence of CXCR4-Using Human Immunodeficiency Virus Type 1 (HIV-1) Variants in a Minority of HIV-1-Infected Patients following Treatment with the CCR5 Antagonist Maraviroc Is from a Pretreatment CXCR4-Using Virus Reservoir

Mike Westby; Marilyn Lewis; Jeannette M. Whitcomb; Mike Youle; Anton Pozniak; Ian James; Timothy Mark Jenkins; Manos Perros; Elna van der Ryst

ABSTRACT Antagonists of the human immunodeficiency virus type 1 (HIV-1) coreceptor, CCR5, are being developed as the first anti-HIV agents acting on a host cell target. We monitored the coreceptor tropism of circulating virus, screened at baseline for coreceptor tropism, in 64 HIV-1-infected patients who received maraviroc (MVC, UK-427,857) as monotherapy for 10 days. Sixty-two patients harbored CCR5-tropic virus at baseline and had a posttreatment phenotype result. Circulating virus remained CCR5 tropic in 60/62 patients, 51 of whom experienced an HIV RNA reduction from baseline of >1 log10 copies/ml, indicating that CXCR4-using variants were not rapidly selected despite CCR5-specific drug pressure. In two patients, viral load declined during treatment and CXCR4-using virus was detected at day 11. No pretreatment factor predicted the emergence of CXCR4-tropic virus during maraviroc therapy in these two patients. Phylogenetic analysis of envelope (Env) clones from pre- and posttreatment time points indicated that the CXCR4-using variants probably emerged by outgrowth of a pretreatment CXCR4-using reservoir, rather than via coreceptor switch of a CCR5-tropic clone under selection pressure from maraviroc. Phylogenetic analysis was also performed on Env clones from a third patient harboring CXCR4-using virus prior to treatment. This patient was enrolled due to a sample labeling error. Although this patient experienced no overall reduction in viral load in response to treatment, the CCR5-tropic components of the circulating virus did appear to be suppressed while receiving maraviroc as monotherapy. Importantly, in all three patients, circulating virus reverted to predominantly CCR5 tropic following cessation of maraviroc.


PLOS Pathogens | 2010

HIV capsid is a tractable target for small molecule therapeutic intervention.

Wade S. Blair; Chris Pickford; Stephen L. Irving; David W. Brown; Marie Anderson; Richard Bazin; Joan Q Cao; Giuseppe Ciaramella; Jason Isaacson; Lynn Jackson; Rachael Hunt; Anne Maria Kristina Kjerrstrom; James A. Nieman; Amy K. Patick; Manos Perros; Andrew D. Scott; Kevin Whitby; Hua Wu; Scott L. Butler

Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.


Bioorganic & Medicinal Chemistry Letters | 2009

Pyrazole NNRTIs 4: Selection of UK-453,061 (lersivirine) as a Development Candidate

Charles Eric Mowbray; Catherine Burt; Romuald Corbau; Simon Gayton; Michael Hawes; Manos Perros; Isabelle Tran; David A. Price; Faye J. Quinton; Matthew D. Selby; Paul Anthony Stupple; Rob Webster; Anthony Wood

We prepared three discreet cohorts of potent non-nucleoside HIV reverse transcriptase inhibitors (NNRTIs) based on the recently reported 3-cyanophenoxypyrazole lead 3. Several of these compounds displayed very promising anti-HIV activity in vitro, safety, pharmacokinetic and pharmaceutical profiles. We describe our analysis and conclusions leading to the selection of alcohol 5 (UK-453,061, lersivirine) for clinical development.


Antimicrobial Agents and Chemotherapy | 2010

Lersivirine, a nonnucleoside reverse transcriptase inhibitor with activity against drug-resistant human immunodeficiency virus type 1.

Romuald Corbau; Julie Mori; Christopher Phillips; Lesley Fishburn; Alex Martin; Charles Eric Mowbray; Wendy Panton; Caroline Smith-Burchnell; Adele Thornberry; Heather Ringrose; Thorsten Knöchel; Steve Irving; Mike Westby; Anthony Wood; Manos Perros

ABSTRACT The nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1). A major problem with the first approved NNRTIs was the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular K103N and Y181C, which led to resistance to the entire class. We adopted an iterative strategy to synthesize and test small molecule inhibitors from a chemical series of pyrazoles against wild-type (wt) RT and the most prevalent NNRTI-resistant mutants. The emerging candidate, lersivirine (UK-453,061), binds the RT enzyme in a novel way (resulting in a unique resistance profile), inhibits over 60% of viruses bearing key RT mutations, with 50% effective concentrations (EC50s) within 10-fold of those for wt viruses, and has excellent selectivity against a range of human targets. Altogether lersivirine is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses.


Clinical Pharmacology & Therapeutics | 2011

The Innate Immune Response, Clinical Outcomes, and Ex Vivo HCV Antiviral Efficacy of a TLR7 Agonist (PF-4878691)

Fidock; Be Souberbielle; C Laxton; J Rawal; O Delpuech‐Adams; Tp Corey; P Colman; V Kumar; Jb Cheng; K Wright; S. Srinivasan; K Rana; Charles Craig; N Horscroft; Manos Perros; Mike Westby; R Webster; E van der Ryst

Hepatitis C virus (HCV) infection is an issue of global concern, and studies are ongoing to identify new therapies that are both effective and safe. PF‐4878691 is a Toll‐like receptor 7 (TLR7) agonist modeled so as to dissociate its antiviral activities from its inflammatory activities. In a proof‐of‐mechanism study in healthy volunteers who received doses of 3, 6, and 9 mg of PF‐4878691 twice a week for 2 weeks, PF‐4878691 induced biomarkers of the immune and interferon (IFN) responses in a dose‐dependent and dose‐frequency‐related manner. A novel finding was induction of TLR7 expression in vivo in response to PF‐4878691, leading to an amplified biomarker response. A nonresponder at the 9‐mg dose had a polymorphism in the IFN‐α receptor 1 subunit (Val168Leu). Two subjects who had received 9‐mg doses experienced serious adverse events (SAEs), characterized by flu‐like symptoms, hypotension, and lymphopenia, leading to early termination of the study. TLR7 stimulation results in a pharmacologic response at levels commensurate with predicted antiviral efficacy, but these doses are associated with SAEs, raising concerns about the therapeutic window of this class of compounds for the treatment of HCV infection.


Journal of Medicinal Chemistry | 2009

Novel Indazole Non-Nucleoside Reverse Transcriptase Inhibitors Using Molecular Hybridization Based on Crystallographic Overlays

Lyn H. Jones; Gill Allan; Oscar Barba; Catherine Burt; Romuald Corbau; Thomas Dupont; Thorsten Knöchel; Steve Irving; Donald Stuart Middleton; Charles Eric Mowbray; Manos Perros; Heather Ringrose; Nigel Alan Swain; Robert G. Webster; Mike Westby; Christopher Phillips

A major problem associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV is their lack of resilience to mutations in the reverse transcriptase (RT) enzyme. Using structural overlays of the known inhibitors efavirenz and capravirine complexed in RT as a starting point, and structure-based drug design techniques, we have created a novel series of indazole NNRTIs that possess excellent metabolic stability and mutant resilience.


Antimicrobial Agents and Chemotherapy | 2009

New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation.

Wade S. Blair; Joan Cao; J. Fok-Seang; P. Griffin; Jason Isaacson; R. L. Jackson; E. Murray; Amy K. Patick; Qinghai Peng; Manos Perros; Chris Pickford; Hua Wu; Scott L. Butler

ABSTRACT A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.


Journal of Biomolecular Screening | 2004

Development and Automation of a 384-Well Cell Fusion Assay to Identify Inhibitors of CCR5/CD4-Mediated HIV Virus Entry:

Joe Bradley; Jasween Gill; Francois Bertelli; Romu Corbau; Paul Hayter; Paula Harrison; Andy Tee; Wilma Keighley; Manos Perros; Giuseppe Ciaramella; Andreas Sewing; Christine Williams

This article describes the automation of an in vitro cell-based fusion assay for the identification of novel inhibitors of receptor mediated HIV-1 entry. The assay utilises two stable cell lines: one expressing CD4, CCR5 and an LTR-promoter/β-galactosidase reporter construct, and the other expressing gp160 and tat. Accumulation of β-galactosidase can only occur following fusion of these two cell lines via the gp160 and receptor mediators, as this event facilitates the transfer of the tat transcription factor between the two cell types. Although similar cell fusion systems have been described previously, they have not met the requirements for HTS due to complexity, throughput and reagent cost. The assay described in this article provides significant advantage, as (a) no transfection/infection events are required prior to the assay, reducing the potential for variability, (b) cells are mixed in solution, enhancing fusion efficiency compared to adherent cells, (c) miniaturisation to low volume enables screening in 384-well plates; and (d) online cell dispensing facilitates automated screening. This assay has been employed to screen ~650,000 compounds in a singleton format. The data demonstrate that the assay is robust, with a Z′ consistently above 0.6, which compares favourably with less complex biochemical assays.

Researchain Logo
Decentralizing Knowledge