Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Dorr is active.

Publication


Featured researches published by Patrick Dorr.


Antimicrobial Agents and Chemotherapy | 2005

Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

Patrick Dorr; Mike Westby; Susan Dobbs; Paul Griffin; Becky Irvine; Malcolm Macartney; Julie Mori; Graham Rickett; Caroline Smith-Burchnell; Carolyn Napier; Robert G. Webster; Duncan Robert Armour; David A. Price; Blanda Luzia Christa Stammen; Anthony Wood; Manos Perros

ABSTRACT Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 μM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.


Journal of Virology | 2007

Reduced Maximal Inhibition in Phenotypic Susceptibility Assays Indicates that Viral Strains Resistant to the CCR5 Antagonist Maraviroc Utilize Inhibitor-Bound Receptor for Entry

Mike Westby; Caroline Smith-Burchnell; Julie Mori; Marilyn Lewis; Michael Mosley; Mark Stockdale; Patrick Dorr; Giuseppe Ciaramella; Manos Perros

ABSTRACT Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Δ32/Δ32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.


Eukaryotic Cell | 2003

Novel small-molecule inhibitors of RNA polymerase III

Liping Wu; Jing Pan; Vala Thoroddsen; Deborah R. Wysong; Ronald K. Blackman; Christine E. Bulawa; Alexandra E. Gould; Timothy D. Ocain; Lawrence R. Dick; Patrick R. Errada; Patrick Dorr; Tanya Parkinson; Tony Wood; Daniel Kornitzer; Ziva Weissman; Ian M. Willis; Karen McGovern

ABSTRACT A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


Journal of Medicinal Chemistry | 2011

An Imidazopiperidine Series of CCR5 Antagonists for the Treatment of HIV: The Discovery of N-{(1S)-1-(3-Fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1]oct-8-yl)propyl}acetamide (PF-232798)

Paul Anthony Stupple; David V. Batchelor; Martin Corless; Patrick Dorr; David Ellis; David R. Fenwick; Sebastien Rene Gabriel Galan; Rhys M. Jones; Helen J. Mason; Donald Stuart Middleton; Manos Perros; Francesca Perruccio; Michelle Y. Platts; David C. Pryde; Deborah Rodrigues; Nick N. Smith; Peter T. Stephenson; Robert G. Webster; Mike Westby; Anthony Wood

Preventing entry of HIV into human host cells has emerged as an attractive approach to controlling viral replication. Maraviroc 1 is an approved antagonist of the human CCR5 receptor which prevents the entry of HIV. Herein, we report the design and discovery of a series of imidazopiperidine CCR5 antagonists which retain the attractive antiviral profile and window over hERG activity of maraviroc 1, combined with improved absorption profiles in rat and dog. Furthermore, this series of compounds has been shown to retain activity against a laboratory generated maraviroc-resistant HIV-1 strain, which indicates an alternative resistance profile to that of maraviroc 1. Compound 41f (PF-232798) was selected as a clinical candidate from the imidazopiperidine series and is currently in phase II clinical trials.


Methods in Enzymology | 2009

CCR5 pharmacology methodologies and associated applications.

Roy Mansfield; Sarah L. Able; Paul Griffin; Becky Irvine; Ian James; Malcolm Macartney; Kenneth G. Miller; James E. J. Mills; Carolyn Napier; Iva Navratilova; Manos Perros; Graham Rickett; Harriet Root; Elna van der Ryst; Mike Westby; Patrick Dorr

The G protein-coupled chemokine (C-C motif) receptor, CCR5, was originally characterized as a protein responding functionally to a number of CC chemokines. As with chemokine receptors in general, studies indicate that CCR5 plays a role in inflammatory responses to infection, although its exact role in normal immune function is not completely defined. The vast majority of research into CCR5 has been focused on its role as an essential and predominant coreceptor for HIV-1 entry into host immune cells. Discovery of this role was prompted by the elucidation that individuals homozygous for a 32 bp deletion in the CCR5 gene do not express the receptor at the cell surface, and as a consequence, are remarkably resistant to HIV-1 infection, and apparently possess no other clear phenotype. Multiple studies followed with the ultimate aim of identifying drugs that functionally and physically blocked CCR5 to prevent HIV-1 entry, and thus provide a completely new approach to treating infection and AIDS, the worlds biggest infectious disease killer. To this end, functional antagonists with potent anti-HIV-1 activity have been discovered, as best exemplified by maraviroc, the first new oral drug for the treatment of HIV-1 infection in 10 years. In this chapter, the specific methods used to characterize CCR5 primary pharmacology and apply the data generated to enable drug discovery, notably maraviroc, for the treatment of HIV infection and potentially inflammatory-based indications, are described.


Expert Opinion on Drug Discovery | 2008

CCR5 inhibitors in HIV-1 therapy

Patrick Dorr; Manos Perros

Background: The human immunodeficiency virus 1 (HIV-1) is the causative pathogen of AIDS, the worlds biggest infectious disease killer. About 33 million people are infected worldwide, with 2.1 million deaths a year as a direct consequence. The devastating nature of AIDS has prompted widespread research, which has led to an extensive array of therapies to suppress viral replication and enable recovery of the immune system to prolong and improve patient life substantially. However, the genetic plasticity and replication rate of HIV-1 are considerable, which has lead to rapid drug resistance. This, together with the need for reducing drug side effects and increasing regimen compliance, has led researchers to identify antiretroviral drugs with new modes of action. Objective: This review describes the discovery and clinical development of CCR5 antagonists and the recent approval of maraviroc as a breakthrough in anti-HIV-1 therapy. Conclusion: CCR5 inhibitors target a human cofactor to disable HIV-1 entry into the cells, and thereby provide a new hurdle for the virus to overcome. The status and expert opinion of CCR5 antagonists for the treatment of HIV-1 infection are detailed.


Antiviral Research | 2005

Inhibition of CCR5-mediated infection by diverse R5 and R5X4 HIV and SIV isolates using novel small molecule inhibitors of CCR5: Effects of viral diversity, target cell and receptor density

Samantha Willey; Paul J. Peters; W. Matthew Sullivan; Patrick Dorr; Manos Perros; Paul R. Clapham


Archive | 1999

A. fumigatus acetyl coenzyme-a carboxylase genes and polypeptides and uses thereof

Patrick Dorr; Tanya Parkinson; Christine E. Bulawa


Case Studies in Modern Drug Discovery and Development | 2012

Discovery and Development of Maraviroc, a CCR5 Antagonist for the Treatment of HIV Infection

Patrick Dorr; Blanda Luzia Christa Stammen; Elna van der Ryst


Antiviral Drugs: From Basic Discovery through Clinical Trials | 2011

Discovery and Development of Maraviroc and PF‐232798: CCR5 Antagonists for the Treatment of HIV‐1 Infection

Patrick Dorr; Paul Anthony Stupple

Collaboration


Dive into the Patrick Dorr's collaboration.

Researchain Logo
Decentralizing Knowledge