Manpreet Kaur Rawal
Jawaharlal Nehru University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manpreet Kaur Rawal.
Frontiers in Pharmacology | 2014
Rajendra Prasad; Manpreet Kaur Rawal
It is now well-known that the enhanced expression of ATP binding cassette (ABC) and major facilitator superfamily (MFS) proteins contribute to the development of tolerance to antifungals in yeasts. For example, the azole resistant clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of Cdr1p and/or CaMdr1p belonging to ABC and MFS superfamilies, respectively. Hence, azole resistant isolates display reduced accumulation of therapeutic drug due to its rapid extrusion and that facilitates its survival. Considering the importance of major antifungal transporters, the focus of recent research has been to understand the structure and function of these proteins to design inhibitors/modulators to block the pump protein activity so that the drug already in use could again sensitize resistant yeast cells. The review focuses on the structure and function of ABC and MFS transporters of Candida to highlight the recent advancement in the field.
Advances in Experimental Medicine and Biology | 2016
Rajendra Prasad; Abdul Haseeb Shah; Manpreet Kaur Rawal
There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.
Journal of Biological Chemistry | 2013
Indresh Kumar Maurya; Chaitanya Kumar Thota; Sachin Dev Verma; Jyotsna Sharma; Manpreet Kaur Rawal; Balaguru Ravikumar; Shoban Sen; Neeraj Chauhan; Andrew M. Lynn; Virander S. Chauhan; Rajendra Prasad
Background: Transmembrane peptide mimics (TMPMs) may be useful to prevent helix-helix interaction of multidrug transporter proteins. Results: Rationally designed TMPMs chemosensitized azole-resistant clinical isolates of Candida by blocking drug efflux and in vivo improved the therapeutic efficacy of fluconazole. Conclusion: TMPMs as antagonists offer an alternative approach to chemosensitize azole-resistant Candida isolates. Significance: TMPM-based approach may be extended to other clinically relevant membrane proteins. Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.
Journal of Biological Chemistry | 2013
Manpreet Kaur Rawal; Mohammad Firoz Khan; Khyati Kapoor; Neha Goyal; Sobhan Sen; Ajay K. Saxena; Andrew M. Lynn; Joel D. A. Tyndall; Brian C. Monk; Richard D. Cannon; Sneha Sudha Komath; Rajendra Prasad
Background: The Candida albicans efflux pump Cdr1p causes clinically significant antifungal resistance. Results: Biochemical mapping of Cdr1p transmembrane domain mutants reveals residues affecting drug transport. Conclusion: Functional characterization and homology modeling provide insight into the drug binding cavity and substrate promiscuity of Cdr1p. Significance: A platform is provided for systematic Cdr1p structure/function analysis and the rational design of transport modulators/inhibitors. The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.
Journal of Amino Acids | 2011
Rajendra Prasad; Monika Sharma; Manpreet Kaur Rawal
Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs) which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1), an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs) residues for its extrusion from MDR cells.
Journal of Natural Products | 2014
Manpreet Kaur Rawal; Yalda Shokoohinia; Giuseppina Chianese; Behzad Zolfaghari; Giovanni Appendino; Orazio Taglialatela-Scafati; Rajendra Prasad; Attilio Di Pietro
A series of structurally related jatrophane diterpenoids (1-6), including the new euphosquamosins A-C (4-6), was purified from the Iranian spurge Euphorbia squamosa and evaluated for its capacity to inhibit drug efflux by multidrug transporters of Candida albicans. Three of these compounds showed an interesting profile of activity. In particular, deacetylserrulatin B (2) and euphosquamosin C (6) strongly inhibited the drug-efflux activity of the primary ABC-transporter CaCdr1p, an effect that translated, in a yeast strain overexpressing this transporter, into an increased sensitivity to fluconazole. These compounds were transported by CaCdr1p, as shown by the observation of an 11-14-fold cross-resistance of yeast growth, and could also inhibit the secondary MFS-transporter CaMdr1p. In contrast, euphosquamosin A (4) was selective for CaCdr1p, possibly as a result of a different binding mode. Taken together, these observations suggest jatrophane diterpenes to be a new class of potent inhibitors of multidrug transporters critical for drug resistance in pathogenic yeasts.
Scientific Reports | 2015
Abdul Haseeb Shah; Manpreet Kaur Rawal; Sanjiveeni Dhamgaye; Sneha Sudha Komath; Ajay K. Saxena; Rajendra Prasad
The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling.
Advances in Experimental Medicine and Biology | 2016
Rajendra Prasad; Manpreet Kaur Rawal; Abdul Haseeb Shah
An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida.
Planta Medica | 2016
Shweta Nim; Andreia Mónico; Manpreet Kaur Rawal; Noélia Duarte; Rajendra Prasad; Attilio Di Pietro; Maria-José U. Ferreira
Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.In the transport assay, most compounds were found to inhibit both transporters, most likely as non-substrates, as shown by relative resistance indices close to unity. In contrast, the jatrophanes euphopubescenol (10) and euphomelliferene A (11) were selective for CaMdr1p and CaCdr1p, respectively. Moreover, when used in combination with fluconazole, compounds 12 and 13 displayed strong synergistic interactions (FICI = 0.071) against the yeast strain overexpressing CaMdr1p, decreasing the MIC80 of the antifungal agent 13-fold. Both compounds were also able to reduce the effective concentration of this antifungal agent by 4- to 8-fold against an azole-resistant clinical isolate of C. albicans (F5).
Fems Yeast Research | 2015
Abdul Haseeb Shah; Atanu Banerjee; Manpreet Kaur Rawal; Ajay K. Saxena; Alok K. Mondal; Rajendra Prasad
The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking.
Collaboration
Dive into the Manpreet Kaur Rawal's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs