Ajay K. Saxena
Jawaharlal Nehru University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajay K. Saxena.
Journal of Biological Chemistry | 2006
Chen Chen; Ajay K. Saxena; William N. Simcoke; David N. Garboczi; Peter L. Pedersen; Young Hee Ko
ATP synthesis from ADP, Pi, and Mg2+ takes place in mitochondria on the catalytic F1 unit (α3β3γδϵ) of the ATP synthase complex (F0F1), a remarkable nanomachine that interconverts electrochemical and mechanical energy, producing the high energy terminal bond of ATP. In currently available structural models of F1, the P-loop (amino acid residues 156GGAGVGKT163) contributes to substrate binding at the β subunit catalytic sites. Here, we report the first transition state-like structure of F1 (ADP·Vi·Mg·F1) from rat liver that was crystallized with the phosphate (Pi) analog vanadate (VO3-4 or Vi). Compared with earlier “ground state” structures, this new F1 structure reveals that the active site region has undergone significant remodeling. P-loop residue alanine 158 is located much closer to Vi than it is to Pi in a previous structural model. No significant movements of P-loop residues of the α subunit were observed at its analogous but noncatalytic sites. Under physiological conditions, such active site remodeling involving the small hydrophobic alanine residue may promote ATP synthesis by lowering the local dielectric constant, thus facilitating the dehydration of ADP and Pi. This new crystallographic study provides strong support for the catalytic mechanism of ATP synthesis deduced from earlier biochemical studies of liver F1 conducted in the presence of Vi (Ko, Y. H., Bianchet, M., Amzel, L. M., and Pedersen, P. L. (1997) J. Biol. Chem. 272, 18875-18881; Ko, Y. H., Hong, S., and Pedersen, P. L. (1999) J. Biol. Chem. 274, 28853-28856).
Journal of Biological Chemistry | 2013
Manpreet Kaur Rawal; Mohammad Firoz Khan; Khyati Kapoor; Neha Goyal; Sobhan Sen; Ajay K. Saxena; Andrew M. Lynn; Joel D. A. Tyndall; Brian C. Monk; Richard D. Cannon; Sneha Sudha Komath; Rajendra Prasad
Background: The Candida albicans efflux pump Cdr1p causes clinically significant antifungal resistance. Results: Biochemical mapping of Cdr1p transmembrane domain mutants reveals residues affecting drug transport. Conclusion: Functional characterization and homology modeling provide insight into the drug binding cavity and substrate promiscuity of Cdr1p. Significance: A platform is provided for systematic Cdr1p structure/function analysis and the rational design of transport modulators/inhibitors. The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.
Scientific Reports | 2015
Abdul Haseeb Shah; Manpreet Kaur Rawal; Sanjiveeni Dhamgaye; Sneha Sudha Komath; Ajay K. Saxena; Rajendra Prasad
The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling.
PLOS ONE | 2012
Srinivasan Sundararaj; Deepak Singh; Ajay K. Saxena; Kapil Vashisht; Puran Singh Sijwali; Rajnikant Dixit; Kailash C. Pandey
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg 185 - Glu 221, Glu 210 - Lys 403) in falcipain-2, and one salt bridge (Arg 202-Glu 238) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe214, Trp449 Trp 453) and falcipain-3 (Phe 231 Trp 457 Trp 461) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.
PLOS ONE | 2014
Srinivasan Sundararaj; Ajay K. Saxena; Ruby Sharma; Kapil Vashisht; Supriya Sharma; Anup Anvikar; Rajnikant Dixit; Philip J. Rosenthal; Kailash C. Pandey
Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs). Structural studies of the ICPs of Trypanosoma cruzi (chagasin) and Plasmodium berghei (PbICP) indicated that three loops (termed BC, DE, and FG) are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.
Fems Yeast Research | 2015
Abdul Haseeb Shah; Atanu Banerjee; Manpreet Kaur Rawal; Ajay K. Saxena; Alok K. Mondal; Rajendra Prasad
The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking.
PLOS ONE | 2012
Shanti P. Gangwar; Sharmistha Dey; Ajay K. Saxena
Background The Ergp55 protein belongs to Ets family of transcription factor. The Ets proteins are highly conserved in their DNA binding domain and involved in various development processes and regulation of cancer metabolism. To study the structure and DNA binding autoinhibition mechanism of Ergp55 protein, we have produced full length and smaller polypeptides of Ergp55 protein in E. coli and characterized using various biophysical techniques. Results The Ergp55 polypeptides contain large amount of α-helix and random coil structures as measured by circular dichorism spectroscopy. The full length Ergp55 forms a flexible and elongated molecule as revealed by molecular modeling, dynamics simulation and structural prediction algorithms. The binding analyses of Ergp55 polypeptides with target DNA sequences of E74 and cfos promoters indicate that longer fragments of Ergp55 (beyond the Ets domain) showed the evidence of auto-inhibition. This study also revealed the parts of Ergp55 protein that mediate auto-inhibition. Significance The current study will aid in designing the compounds that stabilize the inhibited form of Ergp55 and inhibit its binding to promoter DNA. It will contribute in the development of drugs targeting Ergp55 for the prostate cancer treatment.
Journal of Molecular Modeling | 2009
B. Sharma; M. K. Jaiswal; Ajay K. Saxena
Development of a vaccine against malaria is a major global health concern. The P28 proteins expressed on the surface of ookinetes of Plasmodium are the targets of transmission blocking antibodies. Injection of P28 proteins in vertebrate hosts induces antibodies that inhibit oocyst formation, blocking transmission of the parasite from mosquitos to human hosts. P28 proteins are crucial for parasite protection inside the mosquito midgut. Despite their importance, structural details of P28 family members have not been available to date. The purpose of this study was to structurally characterise a member of the P28 family, viz. Pb28 protein from Plasmodium berghei, and to study the interaction of Pb28 protein with the scFv (single chain variable fragment) of TBmAb (transmission blocking monoclonal antibody) 13.1 which blocks malaria transmission effectively. Pb28 protein and the TBmAb 13.1 scFv were modelled separately. To decipher the antigen–antibody interaction, ZDOCK and RDOCK programs were used. Our results suggest that, as compared to the template Pvs25, Pb28 protein has four EGF (epidermal growth factor)-like domains arranged in a triangular form with maximum root mean square deviations (RMSDs) present in the loop regions of EGF domains II and III. With the help of docking we were able to show that the B loop of EGF domain II of Pb28 protein interacts with the scFv of TBmAb 13.1. The predicted probable complex of Pb28 protein and 13.1 TBmAb suggests a mechanism for transmission blocking and may help in designing vaccine candidates in the absence of experimentally determined structures of these proteins.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014
Shanti P. Gangwar; Sita R. Meena; Ajay K. Saxena
The CarD protein is highly expressed in mycobacterial strains under basal conditions and is transcriptionally induced during multiple types of genotoxic stress and starvation. The CarD protein binds the β subunit of RNA polymerase and influences gene expression. The disruption of interactions between CarD and the β subunit of RNA polymerase has a significant effect on mycobacterial survival, resistance to stress and pathogenesis. To understand the structure of CarD and its interaction with the β subunit of RNA polymerase, Mycobacterium tuberculosis CarD (MtbCarD) and the Thermus aquaticus RNA polymerase β subunit were recombinantly expressed and purified. Secondary-structure analysis using circular-dichroism spectroscopy indicated that MtbCarD contains ∼ 60% α-helix, ∼ 7% β-sheet and ∼ 33% random-coil structure. The C-terminal domain of MtbCarD (CarD(83-161)) was crystallized and its X-ray structure was determined at 2.1 Å resolution. CarD(83-161) forms a distorted Y-shaped structure containing bundles of three helices connected by a loop. The residues forming the distorted Y-shaped structure are highly conserved in CarD sequences from other mycobacterial species. Comparison of the CarD(83-161) structure with the recently determined full-length M. tuberculosis and T. thermophilus CarD crystal structures revealed structural differences in residues 141-161 of the C-terminal domain of the CarD(83-161) structure. The structural changes in the CarD(83-161) structure occurred owing to proteolysis and crystallization artifacts.
International Journal of Biological Macromolecules | 2012
Ajay K. Saxena
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment. Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of V(H) domain and CDR-L3 region of V(L) domain of Fab2A8. Upon complex formation, the relative orientation between V(L) and V(H) domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.