Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mansour Akbari is active.

Publication


Featured researches published by Mansour Akbari.


Nature | 2003

Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA

Per Arne Aas; Marit Otterlei; Pål Ø. Falnes; Cathrine Broberg Vågbø; Frank Skorpen; Mansour Akbari; Ottar Sundheim; Magnar Bjørås; Geir Slupphaug; Erling Seeberg; Hans E. Krokan

Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.


The EMBO Journal | 1999

Post‐replicative base excision repair in replication foci

Marit Otterlei; Emma Warbrick; Toril A. Nagelhus; Terje Haug; Geir Slupphaug; Mansour Akbari; Per Arne Aas; Kristin Solum Steinsbekk; Oddmund Bakke; Hans E. Krokan

Base excision repair (BER) is initiated by a DNA glycosylase and is completed by alternative routes, one of which requires proliferating cell nuclear antigen (PCNA) and other proteins also involved in DNA replication. We report that the major nuclear uraci‐DNA glycosylase (UNG2) increases in S phase, during which it co‐localizes with incorporated BrdUrd in replication foci. Uracil is rapidly removed from replicatively incorporated dUMP residues in isolated nuclei. Neutralizing antibodies to UNG2 inhibit this removal, indicating that UNG2 is the major uraci‐DNA glycosylase responsible. PCNA and replication protein A (RPA) co‐localize with UNG2 in replication foci, and a direct molecular interaction of UNG2 with PCNA (one binding site) and RPA (two binding sites) was demonstrated using two‐hybrid assays, a peptide SPOT assay and enzyme‐linked immunosorbent assays. These results demonstrate rapid post‐replicative removal of incorporated uracil by UNG2 and indicate the formation of a BER complex that contains UNG2, RPA and PCNA close to the replication fork.


Journal of Biological Chemistry | 2002

hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a Broad Specificity Backup

Bodil Kavli; Ottar Sundheim; Mansour Akbari; Marit Otterlei; Hilde Nilsen; Frank Skorpen; Per Arne Aas; Lars Hagen; Hans E. Krokan; Geir Slupphaug

hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+ , at which the activity of hUNG2 is 2–3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N 4-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.


Journal of Biological Chemistry | 2008

Human AlkB Homolog 1 Is a Mitochondrial Protein That Demethylates 3-Methylcytosine in DNA and RNA

Marianne Pedersen Westbye; Emadoldin Feyzi; Per Arne Aas; Cathrine Broberg Vågbø; Vivi Talstad; Bodil Kavli; Lars Hagen; Ottar Sundheim; Mansour Akbari; Nina-Beate Liabakk; Geir Slupphaug; Marit Otterlei; Hans E. Krokan

The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.


The Journal of Molecular Diagnostics | 2005

Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner.

Mansour Akbari; Marianne Doré Hansen; Jostein Halgunset; Frank Skorpen; Hans E. Krokan

Paraffin-embedded tissue is an important source of material for molecular pathology and genetic investigations. We used DNA isolated from microdissected formalin-fixed, paraffin-embedded gastric tumors for mutation analysis of a region of the human gene for uracil-DNA glycosylase (UNG), encoding the UNG catalytic domain, and detected apparent base substitutions which, after further investigation, proved to be polymerase chain reaction (PCR) artifacts. We demonstrate that low DNA template input in PCR can generate false mutations, mainly guanine to adenine transitions, in a sequence-dependent manner. One such mutation is identical to a mutation previously reported in the UNG gene in human glioma. This phenomenon was not caused by microheterogeneity in the sample material because the same artifact was seen after amplification of a homogenous, diluted plasmid. We did not observe genuine mutations in the UNG gene in 16 samples. Our results demonstrate that caution should be taken when interpreting data from PCR-based analysis of somatic mutations using low amounts of template DNA, and that methods used to enrich putative subpopulations of mutant molecules in a sample material could, in essence, be a further amplification of sequence-dependent PCR-generated artifacts.


Philosophical Transactions of the Royal Society B | 2009

Uracil in DNA and its processing by different DNA glycosylases.

Torkild Visnes; Berit Doseth; Henrik Sahlin Pettersen; Lars Hagen; Mirta M. L. Sousa; Mansour Akbari; Marit Otterlei; Bodil Kavli; Geir Slupphaug; Hans E. Krokan

Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity. Five mammalian uracil-DNA glycosylases have been identified; these are mitochondrial UNG1 and nuclear UNG2, both encoded by the UNG gene, and the nuclear proteins SMUG1, TDG and MBD4. Nuclear UNG2 is apparently the sole contributor to the post-replicative repair of U:A lesions and to the removal of uracil from U:G contexts in immunoglobulin genes as part of somatic hypermutation and class-switch recombination processes in adaptive immunity. All uracil-DNA glycosylases apparently contribute to U:G repair in other cells, but they are likely to have different relative significance in proliferating and non-proliferating cells, and in different phases of the cell cycle. There are also some indications that there may be species differences in the function of the uracil-DNA glycosylases.


Progress in Nucleic Acid Research and Molecular Biology | 2001

Properties and functions of human uracil-DNA glycosylase from the UNG gene.

Hans E. Krokan; Marit Otterlei; Hilde Nilsen; Bodil Kavli; Frank Skorpen; Sonja Andersen; Camilla Skjelbred; Mansour Akbari; Per Arne Aas; Geir Slupphaug

The human UNG-gene at position 12q24.1 encodes nuclear (UNG2) and mitochondrial (UNG1) forms of uracil-DNA glycosylase using differentially regulated promoters, PA and PB, and alternative splicing to produce two proteins with unique N-terminal sorting sequences. PCNA and RPA co-localize with UNG2 in replication foci and interact with N-terminal sequences in UNG2. Mitochondrial UNG1 is processed to shorter forms by mitochondrial processing peptidase (MPP) and an unidentified mitochondrial protease. The common core catalytic domain in UNG1 and UNG2 contains a conserved DNA binding groove and a tight-fitting uracil-binding pocket that binds uracil only when the uracil-containing nucleotide is flipped out. Certain single amino acid substitutions in the active site of the enzyme generate DNA glycosylases that remove either thymine or cytosine. These enzymes induce cytotoxic and mutagenic abasic (AP) sites in the E. coli chromosome and were used to examine biological consequences of AP sites. It has been assumed that a major role of the UNG gene product(s) is to repair mutagenic U:G mispairs caused by cytosine deamination. However, one major role of UNG2 is to remove misincorporated dUMP residues. Thus, knockout mice deficient in Ung activity (Ung-/- mice) have only small increases in GC-->AT transition mutations, but Ung-/- cells are deficient in removal of misincorporated dUMP and accumulate approximately 2000 uracil residues per cell. We propose that BER is important both in the prevention of cancer and for preserving the integrity of germ cell DNA during evolution.


Aging Cell | 2012

RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

Deborah L. Croteau; Marie L. Rossi; Chandrika Canugovi; J. Tian; Peter Sykora; Mahesh Ramamoorthy; ZhengMing Wang; Dharmendra Kumar Singh; Mansour Akbari; Rajesh Kasiviswanathan; William C. Copeland; Vilhelm A. Bohr

RECQL4 is associated with Rothmund–Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q‐PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4‐deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4’s helicase activity. RECQL4 is the first 3′–5′ RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity.


Environmental and Molecular Mutagenesis | 2011

XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

Karin Solvang-Garten; Ottar Sundheim; Javier Peña-Diaz; Sonja Andersen; Geir Slupphaug; Hans E. Krokan; David M. Wilson; Mansour Akbari; Marit Otterlei

XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both short patch (SP) and long patch (LP) base excision repair (BER). We show that POLβ and PNK colocalize with XRCC1 in replication foci and that POLβ and PNK, but not PCNA, colocalize with constitutively present XRCC1‐foci as well as damage‐induced foci when low doses of a DNA‐damaging agent are applied. We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLβ and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP‐inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLβ to sites of DNA damage. Recruitment of PCNA and FEN‐1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP‐1 at the site of DNA damage. These data improve our understanding of recruitment of BER proteins to sites of DNA damage and provide evidence for a role of XRCC1 in the organization of BER into multiprotein complexes of different sizes. Environ. Mol. Mutagen. 2011.


Neuroscience | 2007

Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.

Mansour Akbari; Marit Otterlei; Javier Peña-Diaz; Hans E. Krokan

Oxidative stress in the brain may cause neuro-degeneration, possibly due to DNA damage. Oxidative base lesions in DNA are mainly repaired by base excision repair (BER). The DNA glycosylases Nei-like DNA glycosylase 1 (NEIL1), Nei-like DNA glycosylase 2 (NEIL2), mitochondrial uracil-DNA glycosylase 1 (UNG1), nuclear uracil-DNA glycosylase 2 (UNG2) and endonuclease III-like 1 protein (NTH1) collectively remove most oxidized pyrimidines, while 8-oxoguanine-DNA glycosylase 1 (OGG1) removes oxidized purines. Although uracil is the main substrate of uracil-DNA glycosylases UNG1 and UNG2, these proteins also remove the oxidized cytosine derivatives isodialuric acid, alloxan and 5-hydroxyuracil. UNG1 and UNG2 have identical catalytic domain, but different N-terminal regions required for subcellular sorting. We demonstrate that mRNA for UNG1, but not UNG2, is increased after hydrogen peroxide, indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence of multi-protein BER complexes in nuclei and mitochondria. Extracts from nuclei and mitochondria were both proficient in complete uracil-BER in vitro. BER assays with immunoprecipitates demonstrated that UNG2-EYFP, but not UNG1-EYFP, formed complexes that carried out complete BER. Although apurinic/apyrimidinic site endonuclease 1 (APE1) is highly enriched in nuclei relative to mitochondria, it was apparently the major AP-endonuclease required for BER in both organelles. APE2 is enriched in mitochondria, but its possible role in BER remains uncertain. These results demonstrate that nuclear and mitochondrial BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines.

Collaboration


Dive into the Mansour Akbari's collaboration.

Top Co-Authors

Avatar

Hans E. Krokan

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Marit Otterlei

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Geir Slupphaug

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Per Arne Aas

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bodil Kavli

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Javier Peña-Diaz

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Karin Solvang-Garten

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lars Hagen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ottar Sundheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge