Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel A. Caraballo is active.

Publication


Featured researches published by Manuel A. Caraballo.


Science of The Total Environment | 2011

Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain).

Aguasanta M. Sarmiento; Ángel DelValls; José Miguel Nieto; María José Salamanca; Manuel A. Caraballo

Metal contamination from acid mine drainage (AMD) is a serious problem in the southwest of the Iberian Peninsula, where the Iberian Pyrite Belt is located. This zone contains original sulfide reserves of about 1700Mt distributed among more than 50 massive sulfide deposits. Weathering of these minerals releases to the waters significant quantities of toxic elements, which severely affect the sediments and surface waters of the region. The main goal of this paper is to evaluate the toxicity and the potential risk associated with the mining areas using Microtox test and different factors which assess the degree of contamination of the sediments and waters. For this, a natural stream polluted by AMD-discharge from an abandoned mine has been studied. The results show that elevated concentrations of Cu, As and Zn involve an important potential risk on the aquatic environment, associated both with sediments and waters. Microtox test informs that the sediments are extremely or very toxic, mainly related to concentrations of Fe, As, Cr, Al, Cd, Cu and Zn. Pollution is mainly transferred to the sediments increasing their potential toxicity. A natural creek affected by AMD can store a huge amount of pollution in its sediments while exhibiting a not very low water pH and low water metal concentration.


American Mineralogist | 2009

Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system

Manuel A. Caraballo; Tobias S. Rötting; José Miguel Nieto; Carlos Ayora

Abstract Iron and Al precipitates play very important hydrochemical and environmental roles in aquatic environments affected by acid mine drainage. Despite their great importance, reliable characterization of these precipitates is problematic due to the high proportion of amorphous or poorly ordered mineral phases comprising these precipitates and because of their coexistence with intermediate to highly crystalline phases. To facilitate and improve the characterization of poorly ordered Fe and Al phases, a coupled differential X-ray diffraction (DXRD) and sequential extraction (SE) study was performed on a set of samples from an acid mine water passive treatment system. The results of these techniques indicate the presence of schwertmannite and goethite in the upper 5 cm of the passive treatment reactive material. Furthermore, a progressive decrease of the SO42- adsorbed to the schwertmannite surface is suggested by one of the SE steps. The presence of hydrobasaluminite and amorphous Al(OH)3 is suggested on the basis of SE and thermodynamic modeling analysis. These techniques also allow a quantitative estimation of the proportion of each mineral present. As a result, a complete study of the distribution of each mineral throughout the reactive material profile and the role of each phase in removing metals from the mine water can be obtained. This information is useful, not only to improve the reactive material design, but also to understand the natural processes taking place in aquatic systems affected by mining.


Journal of Environmental Management | 2012

Natural pretreatment and passive remediation of highly polluted acid mine drainage

Francisco Macías; Manuel A. Caraballo; José Miguel Nieto; Tobias S. Rötting; Carlos Ayora

Acid mine drainage (AMD) from the Iberian Pyrite Belt has high acidity and metal concentrations. Earlier pilot experiments, based on limestone sand dispersed in wood shavings (dispersed alkaline substrate; DAS) have been shown to be an efficient treatment option. However, complete metal removal was not achieved, principally due to the high ferrous iron concentration in the inflow AMD. In order to oxidize and remove iron, a natural Fe-oxidizing lagoon (NFOL) was added prior to treatment with limestone-DAS. The NFOL comprises several pre-existing Fe-stromatolite terraces and cascades, and a lagoon with a volume of 100 m(3) built near the mine shaft. Downstream of the NFOL, the limestone-DAS treatment consists of two reactive tanks of 3 m(3) each filled with limestone-DAS reactive substrate, connected in series with two decantation ponds of 6 m(3) each and several oxidation cascades. The AMD emerging from the mine shaft displayed a pH near 3, a net acidity of 1800 mg/L as CaCO(3) equivalents, and mean concentrations of 440 mg/L Zn; 275 mg/L Fe (99% Fe(II)); 3600 mg/L SO(4); 250 mg/L Ca; 100 mg/L Al; 15 mg/L Mn; 5 mg/L Cu; and 0.1-1 mg/L As, Pb, Cr, Cd, Co, and Ni. The oxidation induced in the NFOL enhanced ferric iron concentration, showing an average of 65% oxidation and 38% retention during the monitoring period. The whole system removed a mean of 1350 mg/L net acidity as CaCO(3) equivalents (71% of inflow); corresponding to 100% of Fe, Al, Cu, Pb and As, and 6% of Zn.


Environmental Pollution | 2011

Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

Manuel A. Caraballo; Francisco Macías; Tobias S. Rötting; José Miguel Nieto; Carlos Ayora

During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage.


American Mineralogist | 2012

The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition

Rebecca A. French; Manuel A. Caraballo; Bojeong Kim; J.D. Rimstidt; Mitsuhiro Murayama; Michael F. Hochella

Abstract Two sets of precipitates collected from stream sediments in the Monte Romero (MR) and Tinto Santa Rosa (TSR) abandoned mine sites-located in the Iberian Pyrite Belt (IPB) of Spain-were identified as the iron oxyhydroxysulfate nanomineral schwertmannite using X-ray diffraction (XRD) and bulk digestion and were further studied in great detail using analytical high-resolution transmission electron microscopy (HRTEM). Extensive HRTEM observations suggest that schwertmannite should not be described as a single-phase mineral with a repeating unit cell, but as a polyphasic nanomineral with crystalline areas spanning less than a few nanometers within an amorphous matrix. The d-spacings measured from lattice fringes within schwertmannite’s needles match with d-spacings of the known transformation products of schwertmannite (goethite and jarosite). This finding implies that the initial stages of schwertmannite transformation occur as a gradual structural reordering at the nanoscale. Energy-dispersive X-ray analysis applied across individual schwertmannite needles with ∼3 nm spot size resolution reveal a decreasing ratio of sulfur to iron and silicon to iron from the surface of the needle to the core with the silicon to iron ratio consistently higher than the sulfur to iron ratio. Amorphous silicon-rich precipitates were identified on the surface of the TSR schwertmannite. All of these observations explain why the measured solubility product of schwertmannite is variable, resulting in calculated stability fields that differ greatly from sample to sample. Arsenic is the most abundant trace element in these samples [MR: 0.218(1) wt% and TSR: 0.53(2) wt%], keeping in mind that schwertmannite has been shown to be a key player in the cycling of this element on a global basis, particularly from the IPB. Furthermore, arsenic in the TSR schwertmannite is associated with crystalline areas within its needle matrix, implying that schwertmannite-derived goethite nanocrystals may be an important host of arsenic.


Journal of Hazardous Materials | 2012

Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems

Francisco Macías; Manuel A. Caraballo; José Miguel Nieto

As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected.


American Mineralogist | 2011

Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full-scale passive treatment of Mina Esperanza (SW Spain)

Manuel A. Caraballo; Francisco Macías; José Miguel Nieto; Julio Castillo; Dino Quispe; Carlos Ayora

Abstract Acid mine drainage remediation is an unresolved matter in abandoned mining districts around the world. Development and implementation of passive treatment systems in these areas are commonly focused on engineering and water quality aspects. Neoformed mineral phases precipitated within the reactive material of these passive treatments account for the removal of pollutants but also can cause clogging and passivation of the reactive substrate. After 20 months of operation and monitoring, the limestone-based passive treatment system implemented in Mina Esperanza (SW Spain) was sampled to study the relationship between water chemistry, mineral composition of the neoformed precipitates, and treatment performance. Water chemical profiles show the existence of three precipitation zones controlled by Fe, Al, and Zn hydrochemistry and also a migration with time of precipitation zones downward into the reactive material. These precipitation zones were also confirmed by a mineral study performed on the solid samples where either schwertmannite and goethite or hydrobasaluminite and Zn-rich green rust were the mineral phases that controlled the metal removal in the three precipation (Fe, Al, or Zn) zones. Iron and Al precipitates were observed to play a critical role in the time evolution of the reactive material hydraulic conductivity. Furthermore, Al precipitates passivated to some extent the limestone grains by armoring, although migration of the Fe precipitation zone and Al redissolution later activated the limestone grains. A higher proportion of limestone in the reactive mixture and the addition of new reagents to the bottom section of the reactive material (to enhance the reducing environment and to promote divalent metal removal) are proposed on the basis of this hydrochemical and mineralogical study for a future design for the Mina Esperanza passive treatment system.


Journal of Hazardous Materials | 2010

Implementation of an MgO-based metal removal step in the passive treatment system of Shilbottle, UK: column experiments.

Manuel A. Caraballo; Tobias S. Rötting; Verónica Silva

Three laboratory column experiments were performed to test the suitability of two different MgO-rich reagents for removal of Mn and Al from the out-flowing waters of Shilbottle passive treatment system (Northumberland, UK). The input water was doped with 100 mg/L Zn in order to extrapolate results to waters in sulphide mining districts. One column was filled with a Dispersed Alkaline Substrate (DAS) containing 12.5% (v/v) caustic magnesia precipitator dust (CMPD) from Spain mixed with wood shavings, two columns were filled with DAS containing wood shavings and 12.5% or 25% (v/v), respectively, of dolomitic lime precipitator dust (DLPD) from Thrislington, UK. The two columns containing 12.5% of CMPD or DLPD completely removed the contaminants from the inflow water during the first 6 weeks of the experiment (mean removal of 88 mg/L Al, 96 mg/L Zn and 37 mg/L Mn), operating at an acidity load of 140 g acidity/m(2)day. At this moment, a substantial increase of the Al and Mn water concentration in the out-flowing waters of Shilbottle occurred (430 g acidity/m(2)day), leading to passivation of the reactive material and to the development of preferential flow paths within less than another 6 weeks, probably mainly due to Al precipitates. Al should be removed prior to MgO treatment.


American Mineralogist | 2010

Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K.

Manuel A. Caraballo; Esther Santofimia; Adam P. Jarvis

Abstract Mineralogical characterization of the precipitates developed in passive systems treating minepolluted waters is an essential tool to fully understand and control the removal processes taking place in these systems. In 2008, after five years of operation, a section of the permeable reactive barrier (PRB) at Shilbottle, Northumberland, was subjected to a low intrusive/non-destructive solid sampling. These solid samples were mineralogically characterized by XRD, ESEM-EDS, and sequential extractions. In addition to the solid sampling, 44 water samples obtained in the PRB from January 2004 to August 2009 were used to study the mineral stability of some selected phases in these waters. It was observed that the main iron phases in the PRB were those associated with mineral phases typically developed in non-reducing environments (schwertmannite and goethite), while the presence of a significant amount of pyrite was also observed. The low residence time of the water within the PRB (from 10 to 40 h) appears to be the reason for the absence of a more reducing and less acidic environment in the reactive substrate. An increase of residence time in the PRB, by increasing reactive mixture porosity and resizing the PRB, changes in the reactive material employed (smaller limestone grain size and inclusion of zerovalent iron) and changes in the PRB design (isolating top layer and forced homogeneous flow upward through all the reactive material) are proposed for future reconditioning of the system.


Environmental Science & Technology | 2011

Mineralogy and geochemistry of Zn-rich mine-drainage precipitates from an MgO passive treatment system by synchrotron-based X-ray analysis.

Rafael Pérez-López; Francisco Macías; Manuel A. Caraballo; José Miguel Nieto; Gabriela Roman-Ross; Rémi Tucoulou; Carlos Ayora

Synchrotron radiation-induced micro-X-ray analysis were applied to characterize the newly formed phases that precipitate in a passive treatment system using magnesium oxide to remove high concentrations of zinc (ca. 440 mg/L) and other minor metals from neutral pretreated waters in the Iberian Pyrite Belt (SW Iberian Peninsula). Micro-X-ray fluorescence (μ-XRF) maps of polished samples were used to find spatial correlations among metals, pinpointing zones of interest where micro-X-ray diffraction (μ-XRD) data were exploited to identify the mineral phases responsible for metal retention. This coupled technique identified hydrozincite (Zn(5)(CO(3))(2)(OH)(6)) and minor loseyite ((Mn,Zn)(7)(CO(3))(2)(OH)(10)) as the mineral sinks for Zn and also other potentially toxic elements such as Co and Ni. Although hydrozincite retains traces of Mn, this metal is mainly retained by precipitation of loseyite. The precipitation of zinc hydroxy-carbonates and their ability to uptake other metals (Mn, Co, and Ni) is hence of potential interest not only for the treatment of contaminated waters but also for the generation of a solid waste that could be exploited as a new Zn economic resource.

Collaboration


Dive into the Manuel A. Caraballo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Ayora

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias S. Rötting

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Santofimia

Instituto Geológico y Minero de España

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge