Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Bañobre-López is active.

Publication


Featured researches published by Manuel Bañobre-López.


Acta Biomaterialia | 2012

Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite

Anna Tampieri; Teresa D’Alessandro; Monica Sandri; Simone Sprio; Elena Landi; Luca Bertinetti; Silvia Panseri; G. Pepponi; Joerg Goettlicher; Manuel Bañobre-López; J. Rivas

The use of magnetic activation has been proposed to answer the growing need for assisted bone and vascular remodeling during template/scaffold regeneration. With this in mind, a synthesis procedure was developed to prepare bioactive (Fe2+/Fe3+)-doped hydroxyapatite (Fe-HA), endowed with superparamagnetic-like properties. This new class of magnetic hydroxyapatites can be potentially employed to develop new magnetic ceramic scaffolds with enhanced regenerative properties for bone surgery; in addition, magnetic Fe-HA can find application in anticancer therapies, to replace the widely used magnetic iron oxide nanoparticles, whose long-term cytotoxicity was recently found to reach harmful levels. An extensive physicochemical, microstructural and magnetic characterization was performed on the obtained Fe-HA powders, and demonstrated that the simultaneous addition of Fe2+ and Fe3+ ions during apatite nucleation under controlled synthesis conditions induces intrinsic magnetization in the final product, minimizing the formation of magnetite as secondary phase. This result potentially opens new perspectives for biodevices aimed at bone regeneration and for anti-cancer therapies based on hyperthermia.


Reports of Practical Oncology & Radiotherapy | 2013

Magnetic nanoparticle-based hyperthermia for cancer treatment

Manuel Bañobre-López; Antonio Teijeiro; J. Rivas

Nanotechnology involves the study of nature at a very small scale, searching new properties and applications. The development of this area of knowledge affects greatly both biotechnology and medicine disciplines. The use of materials at the nanoscale, in particular magnetic nanoparticles, is currently a prominent topic in healthcare and life science. Due to their size-tunable physical and chemical properties, magnetic nanoparticles have demonstrated a wide range of applications ranging from medical diagnosis to treatment. Combining a high saturation magnetization with a properly functionalized surface, magnetic nanoparticles are provided with enhanced functionality that allows them to selectively attach to target cells or tissues and play their therapeutic role in them. In particular, iron oxide nanoparticles are being actively investigated to achieve highly efficient carcinogenic cell destruction through magnetic hyperthermia treatments. Hyperthermia in different approaches has been used combined with radiotherapy during the last decades, however, serious harmful secondary effects have been found in healthy tissues to be associated with these treatments. In this framework, nanotechnology provides a novel and original solution with magnetic hyperthermia, which is based on the use of magnetic nanoparticles to remotely induce local heat when a radiofrequency magnetic field is applied, provoking a temperature increase in those tissues and organs where the tumoral cells are present. Therefore, one important factor that determines the efficiency of this technique is the ability of magnetic nanoparticles to be driven and accumulated in the desired area inside the body. With this aim, magnetic nanoparticles must be strategically surface functionalized to selectively target the injured cells and tissues.


Langmuir | 2009

Synthesis of small atomic copper clusters in microemulsions.

Carlos Vázquez-Vázquez; Manuel Bañobre-López; Atanu Mitra; M. Arturo López-Quintela; J. Rivas

We report evidence of the formation of small atomic copper clusters, Cu(n), by the microemulsion technique, and how their size can be controlled by adjusting the percentage of the reducing agent used. Copper clusters were characterized by UV-visible spectrophotometry and atomic force microscopy. Photoluminescent copper clusters, Cu(n), with n less, similar 13, can be obtained using very low percentages of the reducing agent (<10% of the stochiometric amount). Photoluminescent clusters disappear for larger percentages of reducing agent, giving rise to larger copper clusters (0.8-2.0 nm), showing a red-shift of their UV-visible absorption bands as they grow in size. Finally, by using near stoichiometric amounts, nanoparticles of 2.9 +/- 1.1 nm in size, displaying the characteristic plasmon band, can be obtained.


Nanoscale Research Letters | 2011

The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles

Yolanda Piñeiro-Redondo; Manuel Bañobre-López; Iván Pardiñas-Blanco; Gerardo F. Goya; M. Arturo López-Quintela; J. Rivas

The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved.PACS: 80; 87; 87.85jf


Journal of the Royal Society Interface | 2013

Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

Antonio Gloria; Teresa Russo; Ugo D'Amora; S. Zeppetelli; T. D'Alessandro; Monica Sandri; Manuel Bañobre-López; Yolanda Piñeiro-Redondo; Marc Uhlarz; Anna Tampieri; J. Rivas; T. Herrmannsdörfer; V. Dediu; Luigi Ambrosio; R. De Santis

In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.


Nature Materials | 2009

Reduction of the bulk modulus at high pressure in CrN

F. Rivadulla; Manuel Bañobre-López; Camilo X. Quintela; A. Piñeiro; Victor Pardo; D. Baldomir; M. A. López-Quintela; J. Rivas; Carlos A. Ramos; Horacio Salva; Jianshi Zhou; John B. Goodenough

Nitride coatings are increasingly demanded in the cutting- and machining-tool industry owing to their hardness, thermal stability and resistance to corrosion. These properties derive from strongly covalent bonds; understanding the bonding is a requirement for the design of superhard materials with improved capabilities. Here, we report a pressure-induced cubic-to-orthorhombic transition at approximately 1 GPa in CrN. High-pressure X-ray diffraction and ab initio calculations show an unexpected reduction of the bulk modulus, K0, of about 25% in the high-pressure (lower volume) phase. Our combined theoretical and experimental approach shows that this effect is the result of a large exchange striction due to the approach of the localized Cr:t3 electrons to becoming molecular-orbital electrons in Cr-Cr bonds. The softening of CrN under pressure is a manifestation of a strong competition between different types of chemical bond that are found at a crossover from a localized to a molecular-orbital electronic transition.


Journal of Applied Physics | 2011

Poly(caprolactone) based magnetic scaffolds for bone tissue engineering

Manuel Bañobre-López; Yolanda Piñeiro-Redondo; R. De Santis; Antonio Gloria; Luigi Ambrosio; Anna Tampieri; V. Dediu; J. Rivas

Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.


Nanotechnology | 2003

Magnetic properties of chromium (III) oxide nanoparticles

Manuel Bañobre-López; Carlos Vázquez-Vázquez; J. Rivas; M. Arturo López-Quintela

Cr2O3 nanoparticles of controlled particle size were prepared by calcination of a precursor, Cr(OH)3, obtained by precipitation with sodium hydroxide. Samples were characterized by transmission electron microscopy and x-ray diffraction. Average particle sizes ranged from 20 to 200 nm. The magnetic properties of Cr2O3 nanoparticles show the presence of a net magnetic moment at the surface due to the large surface/volume ratio. This fact modifies the classical behaviour expected for bulk antiferromagnetic particles. Below the Neel temperature, magnetization curves as a function of the applied magnetic field show the presence of coercive forces in the low-field range.


IEEE Transactions on Magnetics | 2014

Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering

Manuel Bañobre-López; Yolanda Piñeiro-Redondo; Monica Sandri; Anna Tampieri; Roberto De Santis; Valentin Alek Dediu; J. Rivas

The design and fabrication of advanced biocompatible and bioresorbable materials able to mimic the natural tissues present in the human body constitutes an important challenge in regenerative medicine. The size-dependent properties that materials exhibit at the nanoscale as a consequence of their higher surface-to-volume ratio have opened a wide range of opportunities for applications in almost every imaginable field. In this regard, the incorporation of magnetic nanoparticles (MNPs) into biocompatible scaffold formulations provides final materials with additional multifunctionality and reinforced mechanical properties for bone tissue engineering applications. In addition to the biological implications due to their magnetic character (i.e., magnetic stimuli that favor the cell adhesion/proliferation, guiding of growth factors loaded magnetic nanocarriers, etc.), the ability of superparamagnetic scaffolds to simultaneously show magnetic hyperthermia when a dynamic external magnetic field is applied become promising to treat critical bone defects caused by malignant bone cancer through a combined therapy consisting of on demand temperature increase and thermally activated drug delivery. In this paper, we will comment on several different approaches to construct magnetic scaffolds with hyperthermia properties for bone tissue engineering. Experimental details about the design, fabrication and physicochemical characterization of a representative set of magnetic scaffolds have been described, focusing on their hyperthermia properties. The following synthesis procedures to magnetize biocompatible scaffolds reported in this paper covers dip coating of biocompatible gelatin-based scaffolds in aqueous MNPs dispersions, iron doping of the hydroxyapatite (HA) crystal structure, and incorporation of magnetic bioresorbable HA nanoparticles into poly-ε-caprolactone-based polymeric matrices.


ACS Applied Materials & Interfaces | 2015

Biomimetic Magnetic Silk Scaffolds

Sangram Keshari Samal; Mamoni Dash; Tatiana Shelyakova; Heidi Declercq; Marc Uhlarz; Manuel Bañobre-López; Peter Dubruel; Maria Cornelissen; Thomas Herrmannsdorfer; J. Rivas; Giuseppina Padeletti; Stefaan C. De Smedt; Kevin Braeckmans; David L. Kaplan; V. Alek Dediu

Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 °C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications.

Collaboration


Dive into the Manuel Bañobre-López's collaboration.

Top Co-Authors

Avatar

J. Rivas

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Juan Gallo

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

F. Rivadulla

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

M. A. López-Quintela

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Yolanda Piñeiro-Redondo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge