Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Blouin is active.

Publication


Featured researches published by Manuel Blouin.


The American Naturalist | 2012

Plant Preference for Ammonium versus Nitrate: A Neglected Determinant of Ecosystem Functioning?

Simon Boudsocq; Audrey Niboyet; Jean-Christophe Lata; Xavier Raynaud; Nicolas Loeuille; Jérôme Mathieu; Manuel Blouin; Luc Abbadie; Sébastien Barot

Although nitrogen (N) availability is a major determinant of ecosystem properties, little is known about the ecological importance of plants’ preference for ammonium versus nitrate (β) for ecosystem functioning and the structure of communities. We modeled this preference for two contrasting ecosystems and showed that β significantly affects ecosystem properties such as biomass, productivity, and N losses. A particular intermediate value of β maximizes the primary productivity and minimizes mineral N losses. In addition, contrasting β values between two plant types allow their coexistence, and the ability of one type to control nitrification modifies the patterns of coexistence with the other. We also show that species replacement dynamics do not lead to the minimization of the total mineral N pool nor the maximization of plant productivity, and consequently do not respect Tilman’s R* rule. Our results strongly suggest in the two contrasted ecosystems that β has important consequences for ecosystem functioning and plant community structure.


Plant and Soil | 2010

Earthworm effects on plant growth do not necessarily decrease with soil fertility

Kam-Rigne Laossi; Amandine Ginot; Diana Cristina Noguera; Manuel Blouin; Sébastien Barot

Earthworms are known to generally increase plant growth. However, because plant-earthworm interactions are potentially mediated by soil characteristics the response of plants to earthworms should depend on the soil type. In a greenhouse microcosm experiment, the responsiveness of plants (Veronica persica, Trifolium dubium and Poa annua) to two earthworm species (in combination or not) belonging to different functional groups (Aporrectodea. caliginosa an endogeic species, Lumbricus terrestris an anecic species) was measured in term of biomass accumulation. This responsiveness was compared in two soils (nutrient rich and nutrient poor) and two mineral fertilization treatments (with and without). The main significant effects on plant growth were due to the anecic earthworm species. L. terrestris increased the shoot biomass and the total biomass of T. dubium only in the rich soil. It increased also the total biomass of P. annua without mineral fertilization but had the opposite effect with fertilization. Mineral fertilization, in the presence of L. terrestris, also reduced the total biomass of V. persica. L. terrestris did not only affect plant growth. In P. annua and V. persica A. caliginosa and L. terrestris also affected the shoot/root ratio and this effect depended on soil type. Finally, few significant interactions were found between the anecic and the endogeic earthworms and these interactions did not depend on the soil type. A general idea would be that earthworms mostly increase plant growth through the enhancement of mineralization and that earthworm effects should decrease in nutrient-rich soils or with mineral fertilization. However, our results show that this view does not hold and that other mechanisms are influential.


Agronomy for Sustainable Development | 2015

Earthworm services for cropping systems. A review

Michel Bertrand; Sébastien Barot; Manuel Blouin; Joann K. Whalen; Tatiana de Oliveira; Jean Roger-Estrade

Intensive agriculture is often criticized for negative impacts on environment and human health. This issue may be solved by a better management of organisms living in crop fields. Here, we review the benefits of earthworms for crops, and we present techniques to increase earthworm abundance. The major points are the following: (1) Earthworms usually improve soil structural stability and soil porosity and reduce runoff. (2) Earthworms modify soil organic matter (SOM) and nutrient cycling. Specifically, earthworms stabilize SOM fractions within their casts, and they also increase the mineralization of organic matter in the short term by altering physical protection within aggregates and enhancing microbial activity. (3) The positive correlation between earthworm abundance and crop production is not systematic, and contrasting effects on yields have been observed. Earthworms induce the production of hormone-like substances that improve plant growth and health. (4) Direct drilling increases earthworm abundance and species diversity, but the beneficial effect of reduced tillage depends upon the species present and tillage intensity. (5) Organic amendments enhance earthworm abundance. (6) Earthworms feeding at soil surface are the most exposed to pesticides and other agrochemicals. Finally, we discuss how to combine management practices, including inoculation, to increase the earthworm services. We conclude that using earthworm services in cropping systems has potential to boost agricultural sustainability.


PLOS ONE | 2007

A tale of four stories: soil ecology, theory, evolution and the publication system.

Sébastien Barot; Manuel Blouin; Sébastien Fontaine; Pascal Jouquet; Jean-Christophe Lata; Jérôme Mathieu

Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary.


Science of The Total Environment | 2012

Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil.

My Dung Jusselme; Franck Poly; Edouard Miambi; Philippe Mora; Manuel Blouin; Anne Pando; Corinne Rouland-Lefèvre

The present study aimed to assess the potential abilities of Lantana camara, an invasive plant species for phytoremediation in the presence of earthworm Pontoscolex corethrurus. Effects of earthworm on growth and lead (Pb) uptake by L. camara plant were studied in soil artificially contaminated at 500 or 1000mg of Pb kg(-1) soil. This species has a promising value for phytoremediation because it can uptake as much as 10% of 1000mgkg(-1) of Pb per year. Moreover, the presence of earthworms enhanced plant biomass by about 1.5-2 times and increased the uptake of lead by about 2-3 times. In the presence of earthworm, L. camara was thus able to uptake up 20% of Pb presence in the soil, corresponding to remediation time of 5 years if all organs are removed. As soil microorganisms are known to mediate many interactions between earthworms and plants, we documented the effect of earthworms on the bacterial community of root-adhering soil of L. camara. Cultivable bacterial biomass of root-adhering soil increased in the presence of earthworms. Similar trend was observed on bacterial metabolic activities. The increase of lead concentrations from 500 to 1000mgkg(-1) did not have any significant effect either on plant growth or on bacterial biomass and global activities but affected the structure and functional diversity of the bacterial community. These results showed that we should broaden the ecological context of phytoremediation by considering plant/microbial community/earthworm interactions that influence the absorption of heavy metals.


PLOS ONE | 2012

Signal Molecules Mediate the Impact of the Earthworm Aporrectodea caliginosa on Growth, Development and Defence of the Plant Arabidopsis thaliana

Ruben Puga-Freitas; Sébastien Barot; Ludivine Taconnat; Jean-Pierre Renou; Manuel Blouin

Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid) in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships.


Soil Science | 2016

Ecosystem engineers in a self-organized soil: A review of concepts and future research questions

Patrick Lavelle; Alister V. Spain; Manuel Blouin; George G. Brown; Thibaud Decaëns; Michel Grimaldi; Juan J. Jiménez; Doyle McKey; Jérôme Mathieu; Elena Velasquez; Anne Zangerlé

Abstract Soils are self-organized ecological systems within which organisms interact within a nested suite of discrete scales. Microorganisms form communities and physical structures at the smallest scale (microns), followed by the community of their predators organized in microfoodwebs (tens of microns), the functional domains built by ecosystem engineers (centimeters to meters), ecosystems, and landscapes. Ecosystem engineers, principally plant roots, earthworms, termites, and ants, play key roles in creating habitats for other organisms and controlling their activities through physical and biochemical processes. The biogenic, organic, and organomineral structures that they produce accumulate in the soil space to form three-dimensional mosaics of functional domains, inhabited by specific communities of smaller organisms (microfauna and mesofauna, microorganisms) that drive soil processes through specific pathways. Ecosystem engineers also produce signaling and energy-rich molecules that act as ecological mediators of biological engineering processes. Energy-rich ecological mediators may selectively activate microbial populations and trigger priming effects, resulting in the degradation, synthesis, and sequestration of specific organic substrates. Signaling molecules inform soil organisms of their producers’ respective presences and change physiologies by modifying gene expression and through eliciting hormonal responses. Protection of plants against pests and diseases is largely achieved via these processes. At the highest scales, the delivery of ecosystem services emerges through the functioning of self-organized systems nested within each other. The integrity of the different subsystems at each scale and the quality of their interconnections are a precondition for an optimum and sustainable delivery of ecosystem services. Lastly, we present seven general research questions whose resolution will provide a firmer base for the proposed conceptual framework while offering new insights for sustainable use of the soil resource.


Applied and Environmental Soil Science | 2012

Control of Cultivable IAA-Producing Bacteria by the Plant Arabidopsisthaliana and the EarthwormAporrectodeacaliginosa

Ruben Puga-Freitas; Samir Abbad; Evelyne Garnier-Zarli; Manuel Blouin

Some soil microorganisms are involved in the complex interactions with plants and earthworms, through the production of indole acetic acid (IAA) which modifies plant growth and development. In a factorial experiment testing the impact of the presence/absence of plants and earthworms on IAA production by cultivable bacteria, we observed that plants were decreasing IAA production of 43%, whereas earthworms were increasing it of 46%. In the presence of both plant and earthworms, IAA production was as low as in the presence of plant control, showing that plants influence on IAA production by microorganisms prevails on earthworm influence. We discuss functional reasons which could explain this result.


Functional Plant Biology | 2011

Combined effects of contrast between poor and rich patches and overall nitrate concentration on Arabidopsis thaliana root system structure

Manuel Blouin; Ruben Puga-Freitas A

The law of correlative inhibition states that roots in a richer environment develop more intensively if other roots of the same plant are in a poorer environment. This probably occurs only when the cost of emitting these roots in the rich patch is compensated by the advantage of having more roots, i.e. in situations where the difference in concentration between rich and poor patches is strong or the overall nutrient amount in the environment is low. For the first time, we tested root system response to combined gradients of contrast between poor and rich patches and of overall NO3- concentration in agar gels. We set up a factorial in vitro experiment crossing contrast (null, weak, strong heterogeneity) with overall NO3- concentration (deficient, optimal, excessive). We observed an increase in ramification density with increasing heterogeneity in deficient situations; but a decrease with increasing heterogeneity in excessive situations. The interaction between overall NO3- concentration and heterogeneity had a significant effect on root ramification density and the distribution of root length in diameter classes. The overall nutrient status of the soil has to be considered to understand the effect of heterogeneity on plant development at the morphological as well as at the molecular level.


bioRxiv | 2016

Systematic variability enhances the reproducibility of an ecological study

Alexandru Milcu; Ruben Puga-Freitas; Aaron M. Ellison; Manuel Blouin; Stefan Scheu; Thomas Girin; Gregoire Frechet; Laura Rose; Michael Scherer-Lorenzen; Sébastien Barot; Jean-Christophe Lata; Simone Cesarz; Nico Eisenhauer; Agnès Gigon; Alexandra Weigelt; Amandine Hansart; Anna Greiner; Anne Pando; Arthur Gessler; Carlo Grignani; Davide Assandri; Gerd Gleixner; Jean-François Le Galliard; Katherine Urban-Mead; Laura Zavattaro; Marina E.H. Müller; Markus Lange; Martin Lukac; Michael Bonkowski; Neringa Mannerheim

Many scientific disciplines currently are experiencing a “reproducibility crisis” because numerous scientific findings cannot be repeated consistently1–4. A new but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduces reproducibility by amplifying impacts of lab-specific environmental factors not accounted for in study designs5–8. A corollary to this hypothesis is that the deliberate introduction of controlled systematic variability (CSV) in experimental designs can increase reproducibility. We tested this hypothesis using a multi-laboratory microcosm study in which the same ecological experiment was repeated in 14 laboratories. Each laboratory introduced environmental and genotypic CSV within and among treatments in replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV increased reproducibility of results in growth chambers but had no significant effect in glasshouses where reproducibility also was lower. Environmental CSV had little effect on reproducibility. This first deliberate attempt at reproducing an ecological experiment with added CSV reveals that introducing genotypic CSV in experiments carried out under controlled environmental conditions with stringent standardization can increase reproducibility by buffering against unaccounted lab-specific environmental and biotic factors that may otherwise strongly bias experimental outcomes.

Collaboration


Dive into the Manuel Blouin's collaboration.

Top Co-Authors

Avatar

Sébastien Barot

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Mathieu

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Pando

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Christophe Lata

Tomsk Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge