Manuel E. Engelhorn
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuel E. Engelhorn.
Journal of Experimental Medicine | 2004
Mary Jo Turk; José A. Guevara-Patiño; Gabrielle Rizzuto; Manuel E. Engelhorn; Alan N. Houghton
Concomitant tumor immunity describes immune responses in a host with a progressive tumor that rejects the same tumor at a remote site. In this work, concomitant tumor immunity was investigated in mice bearing poorly immunogenic B16 melanoma. Progression of B16 tumors did not spontaneously elicit concomitant immunity. However, depletion of CD4+ T cells in tumor-bearing mice resulted in CD8+ T cell–mediated rejection of challenge tumors given on day 6. Concomitant immunity was also elicited by treatment with cyclophosphamide or DTA-1 monoclonal antibody against the glucocorticoid-induced tumor necrosis factor receptor. Immunity elicited by B16 melanoma cross-reacted with a distinct syngeneic melanoma, but not with nonmelanoma tumors. Furthermore, CD8+ T cells from mice with concomitant immunity specifically responded to major histocompatibility complex class I–restricted epitopes of two melanocyte differentiation antigens. RAG1 −/− mice adoptively transferred with CD8+ and CD4+ T cells lacking the CD4+CD25+ compartment mounted robust concomitant immunity, which was suppressed by readdition of CD4+CD25+ cells. Naturally occurring CD4+CD25+ T cells efficiently suppressed concomitant immunity mediated by previously activated CD8+ T cells, demonstrating that precursor regulatory T cells in naive hosts give rise to effective suppressors. These results show that regulatory T cells are the major regulators of concomitant tumor immunity against this weakly immunogenic tumor.
Journal of Immunology | 2003
Jason S. Gold; Cristina R. Ferrone; José A. Guevara-Patiño; William G. Hawkins; Ruben Dyall; Manuel E. Engelhorn; Jedd D. Wolchok; Jonathan J. Lewis; Alan N. Houghton
Successful active immunization against cancer requires induction of immunity against self or mutated self Ags. However, immunization against self Ags is difficult. Xenogeneic immunization with orthologous Ags induces cancer immunity. The present study evaluated the basis for immunity induced by active immunization against a melanoma differentiation Ag, gp100. Tumor rejection of melanoma was assessed after immunization with human gp100 (hgp100) DNA compared with mouse gp100 (mgp100). C57BL/6 mice immunized with xenogeneic full-length hgp100 DNA were protected against syngeneic melanoma challenge. In contrast, mice immunized with hgp100 DNA and given i.p. tolerizing doses of the hgp100 Db-restricted peptide, hgp10025–33, were incapable of rejecting tumors. Furthermore, mice immunized with DNA constructs of hgp100 in which the hgp10025–27 epitope was substituted with the weaker Db-binding epitope from mgp100 (mgp10025–27) or a mutated epitope unable to bind Db did not reject B16 melanoma. Mice immunized with a minigene construct of hgp10025–33 rejected B16 melanoma, whereas mice immunized with the mgp10025–33 minigene did not develop protective tumor immunity. In this model of xenogeneic DNA immunization, the presence of an hgp100 heteroclitic epitope with a higher affinity for MHC created by three amino acid (25 to 27) substitutions at predicted minor anchor residues was necessary and sufficient to induce protective tumor immunity in H-2b mice with melanoma.
Nature Medicine | 2006
Manuel E. Engelhorn; José A. Guevara-Patiño; Gabriele Noffz; Andrea T. Hooper; Olivia Lou; Jason S. Gold; Barry J Kappel; Alan N. Houghton
Little is known about the consequences of immune recognition of mutated gene products, despite their potential relevance to autoimmunity and tumor immunity. To identify mutations that induce immunity, here we have developed a systematic approach in which combinatorial DNA libraries encoding large numbers of random mutations in two syngeneic tyrosinase-related proteins are used to immunize black mice. We show that the libraries of mutated DNA induce autoimmune hypopigmentation and tumor immunity through cross-recognition of nonmutated gene products. Truncations are present in all immunogenic clones and are sufficient to elicit immunity to self, triggering recognition of normally silent epitopes. Immunity is further enhanced by specific amino acid substitutions that promote T helper cell responses. Thus, presentation of a vast repertoire of antigen variants to the immune system can enhance the generation of adaptive immune responses to self.
Journal of Clinical Investigation | 2006
José A. Guevara-Patiño; Manuel E. Engelhorn; Mary Jo Turk; Cailian Liu; Fei Duan; Gabrielle Rizzuto; Adam D. Cohen; Taha Merghoub; Jedd D. Wolchok; Alan N. Houghton
T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.
Molecular Therapy | 2008
Miguel-Angel Perales; Jianda Yuan; Sarah Powel; Humilidad F. Gallardo; Teresa Rasalan; Christina Gonzalez; Gregor Manukian; Jian Wang; Yan Zhang; Paul B. Chapman; Susan E. Krown; Philip O. Livingston; Samuel Ejadi; Katherine S. Panageas; Manuel E. Engelhorn; Stephanie L. Terzulli; Alan N. Houghton; Jedd D. Wolchok
Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances immune responses by inducing dendritic cell proliferation, maturation, and migration and B and T lymphocyte expansion and differentiation. The potency of DNA vaccines can be enhanced by the addition of DNA encoding cytokines, acting as molecular adjuvants. We conducted a phase I/II trial of human GM-CSF DNA in conjunction with a multipeptide vaccine (gp100 and tyrosinase) in stage III/IV melanoma patients. Nineteen human leukocyte antigen (HLA)-A*0201(+) patients were treated. Three dose levels were studied: 100, 400, and 800 mcg DNA/injection, administered subcutaneously (SQ) every month with 500 mcg of each peptide. In the dose-ranging study, 3 patients were treated at each dose level. The remaining patients were then treated at the highest dose. Most toxicities were grade 1 injection site reactions. Eight patients (42%) developed CD8+ T-cell responses, defined by a ≥3 SD increase in baseline reactivity to tyrosinase or gp100 peptide in tetramer or intracellular cytokine staining assays. There was no relationship between dose and T-cell response. Responding T cells had an effector memory cell phenotype. Polyfunctional T cells were also demonstrated. At a median of 31 months follow-up, median survival has not been reached. Human GM-CSF DNA was found to be a safe adjuvant.
Advances in Immunology | 2006
Hiroshi Uchi; Rodica Stan; Mary Jo Turk; Manuel E. Engelhorn; Gabrielle Rizzuto; Stacie M. Goldberg; Jedd D. Wolchok; Alan N. Houghton
A relationship between melanoma and vitiligo, a skin disorder characterized by the loss of melanocytes, has been postulated for many decades. In some cases, vitiligo is almost certainly a manifestation of autoimmune-mediated destruction of melanocytes. Melanocytes and melanoma cells share melanocyte differentiation antigens. Based on a number of observations, de novo vitiligo developing in patients with melanoma has been regarded as a sign of good prognosis. The immune system tolerates or ignores differentiation antigens because these antigens are self-derived. Therefore, immune tolerance or ignorance must be overcome to prime naive T and B cells to induce cancer immunity and autoimmunity against melanocyte differentiation antigens. Mouse models of concurrent melanoma and autoimmune vitiligo have revealed strategies to overcome immune ignorance or tolerance to melanocyte differentiation antigens: immunization with self-antigens as altered self (e.g., orthologues or mutated versions), expression in viral vectors, passive immunization with antibodies or T cells, incorporating potent adjuvants into active immunization, and blockade or removal of a downregulatory mechanism. Extensive investigations into the mechanisms that lead to tumor immunity and autoimmunity elicited by certain differentiation antigens have further revealed a variety of distinct cellular and molecular requirements, which are redundant and alternative.
Molecular Therapy | 2008
Manuel E. Engelhorn; José A. Guevara-Patiño; Taha Merghoub; Cailian Liu; Cristina R. Ferrone; Gabrielle Rizzuto; Daniel Hirschhorn Cymerman; David N Posnett; Alan N. Houghton; Jedd D. Wolchok
Successful approaches to tumor immunotherapy must overcome the physiological state of tolerance of the immune system to self-tumor antigens. Immunization with appropriate variants of syngeneic antigens can achieve this. However, improvements in vaccine design are needed for efficient cancer immunotherapy. Here we explore nine different chimeric vaccine designs, in which the antigen of interest is expressed as an in-frame fusion with polypeptides that impact antigen processing or presentation. In DNA immunization experiments in mice, three of nine fusions elevated relevant CD8(+) T-cell responses and tumor protection relative to an unfused melanoma antigen. These fusions were: Escherichia coli outer membrane protein A (OmpA), Pseudomonas aeruginosa exotoxin A, and VP22 protein of herpes simplex virus-1. The gains of immunogenicity conferred by the latter two are independent of epitope presentation by major histocompatibility complex class II (MHC II). This finding has positive implications for immunotherapy in individuals with CD4(+) T-cell deficiencies. We present evidence that antigen instability is not a sine qua non condition for immunogenicity. Experiments using two additional melanoma antigens identified different optimal fusion partners, thereby indicating that the benefits of fusion vectors remain antigen specific. Therefore large fusion vector panels such as those presented here can provide information to promote the successful advancement of gene-based vaccines.
Journal of Immunology | 2006
Miguel Angel Perales; Adi Diab; Adam D. Cohen; Deonka Huggins; José A. Guevara-Patiño; Vanessa M. Hubbard; Manuel E. Engelhorn; Adam A. Kochman; Jeffrey M. Eng; Fariborz Mortazavi; Onder Alpdogan; Theis H. Terwey; Glenn Heller; Jedd D. Wolchok; Alan N. Houghton; Marcel R.M. van den Brink
Malignant relapse remains a major problem for recipients of allogeneic hemopoietic stem cell transplantation (HSCT). We hypothesized that immunization of allogeneic HSCT recipients against tissue-restricted Ags using DNA vaccines would decrease the risk of relapse without enhancing graft-vs-host disease (GVHD). Using the mouse B16 melanoma model, we found that post-HSCT DNA immunization against a single tumor Ag induces tumor rejection that is significantly greater than HSCT alone in a T cell-depleted MHC-matched minor Ag-mismatched allogeneic HSCT model (LP → B6). In treatment models, post-HSCT DNA immunization provides significantly greater overall survival than the vaccine alone. Donor leukocyte infusion further enhances tumor-free survival, including in treatment models. There was no GVHD in HSCT recipients treated with DNA vaccination and donor leukocyte infusion. Further analysis demonstrated that these effects are dependent on CD8+ T cells of donor origin that recognize multiple epitopes. These results demonstrate that DNA immunization against tissue-restricted Ags after allogeneic T cell-depleted HSCT can induce potent antitumor effects without causing GVHD.
PLOS ONE | 2013
Adi Diab; Robert R. Jenq; Gabrielle Rizzuto; Adam D. Cohen; Deonka Huggins; Taha Merghoub; Manuel E. Engelhorn; José A. Guevara-Patiño; David Suh; Vanessa M. Hubbard-Lucey; Adam A. Kochman; Suzie Chen; Hong Zhong; Jedd D. Wolchok; Marcel R.M. van den Brink; Alan N. Houghton; Miguel Angel Perales
The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference between an ineffective treatment and successful tumor eradication.
Vaccine | 2009
David N. Posnett; Manuel E. Engelhorn; Yun Lin; Taha Merghoub; Fei Duan; Jedd D. Wolchok; Alan N. Houghton
Vaccines are often inefficient in old people and old mice. Few studies have focused on testing vaccines in old populations. Here we used DNA tumor antigen vaccines against melanoma and showed that old mice were not protected. Vaccines incorporating fusions of the tumor antigen with microbial adjuvant proteins OmpA (E. Coli) or Vp22 (Herpes simplex virus-1) dramatically improved protection of old mice. The mechanisms by which these adjuvant proteins act are distinct. TLR2 was not required for either OmpA or Vp22. Antigen processing and presentation were not boosted by these fusion constructs. However, fusion constructs with Vp22 gave a strong CD4 response to B16 melanoma and the OmpA response is MHC-II dependent. Both adjuvant fusion constructs stimulated CD4 and CD8 responses otherwise diminished in old mice.