Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel E. Mendoza is active.

Publication


Featured researches published by Manuel E. Mendoza.


Landscape and Urban Planning | 2001

Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico

Erna López; Gerardo Bocco; Manuel E. Mendoza; Emilio Duhau

Land-cover and land-use (LCLU) change was quantified for the last 35 years within and in the vicinity of a fast growing city in Mexico, using rectified aerial photographs and geographic information systems (GIS). LCLU change was projected for the next 20 years using Markov chains and regression analyses. The study explored the relationships between urban growth and landscape change, and between urban growth and population growth. The analysis of Markov matrices suggests that the highest LCLU attractor is the city of Morelia, followed by plantations and croplands. Grasslands and shrublands are the least stable categories. The most powerful use of the Markov transition matrices seems to be at the descriptive rather than the predictive level. Linear regression between urban and population growth offered a more robust prediction of urban growth in Morelia. Hence, we suggest that linear regression should be used when projecting growth tendencies of cities in regions with similar characteristics.


Geomorphology | 2001

Remote sensing and GIS-based regional geomorphological mapping—a tool for land use planning in developing countries

Gerardo Bocco; Manuel E. Mendoza; Alejandro Velázquez

Abstract Land use planning and necessary supporting data are crucial to developing countries that are usually under severe environmental and demographic strains. Approaches and methods to map the variability of natural resources are important tools to properly guide spatial planning. In this paper, we describe a method to quickly map terrain at reconnaissance (1:250,000) and semi-detailed (1:50,000) levels. This method can be utilized as a basis for further land evaluation and land use planning in large territories. The approach was tested in the state of Michoacan, central-western Mexico, currently undergoing rapid deforestation and subsequent land degradation. Results at the reconnaissance level describe the geographic distribution of major landforms and dominant land cover, and provide a synoptic inventory of natural resources. Results at the semi-detailed level indicate how to nest individual landforms to major units and how they can be used to run procedures for land evaluation. If combined with appropriate socioeconomic data, governmental guidelines for land use planning can be formulated on the basis of reconnaissance and semi-detailed terrain analysis.


Progress in Physical Geography | 2016

Habitat connectivity in biodiversity conservation A review of recent studies and applications

Camilo A. Correa Ayram; Manuel E. Mendoza; Andrés Etter; Diego R. Pérez Salicrup

The study of landscape connectivity in conservation has increased considerably since the early part of the 21st century. While the implications of landscape connectivity are self-evident for conservation, they are also important for physical geography since a proper understanding of landscape patterns and processes allows for better landscape management practices, which are at the core of geography. This paper presents a review of the literature based on 162 publications from 2000 to 2013, in which we evaluated the current state and recent advances in the integration of landscape connectivity in the identification and planning of conservation areas. The literature review and data analysis were based on a database organized into five categories: General information, study areas, research objectives, research methods in connectivity studies, and integration of connectivity with conservation. We found a substantial increase in the number of publications relating to connectivity and conservation from 2008 to 2013. Least cost analysis was the method most commonly applied. We found no implementation of landscape connectivity proposals generated by the studies (e.g. potential corridors) into real landscape elements to ensure the permanence and functionality of ecosystems. We identified four important niches for potential future research projects: a) connectivity and climate change, b) contribution of connectivity studies to restoration planning, c) connectivity and land cover/land use change modeling and planning, d) contribution of connectivity analysis in the provision of ecosystem services across landscapes.


Environmental Management | 2014

Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach

C. Kosmas; O. Kairis; C. Karavitis; Coen J. Ritsema; Luca Salvati; S. Acikalin; M. Alcalá; P. Alfama; J. Atlhopheng; J. Barrera; A. Belgacem; Albert Solé-Benet; J. Brito; Miloud Chaker; Raban Chanda; Celeste Coelho; M. Darkoh; I. Diamantis; O. Ermolaeva; V. Fassouli; W. Fei; J. Feng; F. Fernandez; A. J. D. Ferreira; C. Gokceoglu; D. Gonzalez; H. Gungor; Rudi Hessel; J. Juying; H. Khatteli

An approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia. Based on an existing geo-referenced database, classes were designated for each indicator and a sensitivity score to desertification was assigned to each class based on existing research. The obtained data were analyzed for the various processes of land degradation at farm level. The derived methodology was assessed using independent indicators, such as the measured soil erosion rate, and the organic matter content of the soil. Based on regression analyses, the collected indicator set can be reduced to a number of effective indicators ranging from 8 to 17 in the various processes of land degradation. Among the most important indicators identified as affecting land degradation and desertification risk were rain seasonality, slope gradient, plant cover, rate of land abandonment, land-use intensity, and the level of policy implementation.


Environmental Management | 2014

Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation, causes, and implications for management

O. Kairis; C. Kosmas; C. Karavitis; Coen J. Ritsema; Luca Salvati; S. Acikalin; M. Alcalá; P. Alfama; J. Atlhopheng; J. Barrera; A. Belgacem; Albert Solé-Benet; J. Brito; Miloud Chaker; Raban Chanda; Celeste Coelho; M. Darkoh; I. Diamantis; O. Ermolaeva; V. Fassouli; W. Fei; J. Feng; F. Fernandez; A. J. D. Ferreira; C. Gokceoglu; D. Gonzalez; H. Gungor; Rudi Hessel; J. Juying; H. Khatteli

Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators. The database described earlier in this issue by Kosmas and others (Environ Manage, 2013) for defining desertification risk was further analyzed to define the most important indicators related to the following degradation processes: water erosion in various land uses, tillage erosion, soil salinization, water stress, forest fires, and overgrazing. A correlation analysis was applied to the selected indicators in order to identify the most important variables contributing to each land degradation process. The analysis indicates that the most important indicators are: (i) rain seasonality affecting water erosion, water stress, and forest fires, (ii) slope gradient affecting water erosion, tillage erosion and water stress, and (iii) water scarcity soil salinization, water stress, and forest fires. Implementation of existing regulations or policies concerned with resources development and environmental sustainability was identified as the most important indicator of land protection.


Regional Environmental Change | 2018

Effect of the landscape matrix condition for prioritizing multispecies connectivity conservation in a highly biodiverse landscape of Central Mexico

Camilo A. Correa Ayram; Manuel E. Mendoza; Andrés Etter; Diego R. Pérez-Salicrup

Implementing and monitoring long-term conservation strategies demands identifying priorities for preserving landscape connectivity. In this manuscript, we present an approach to prioritize areas for preserving landscape connectivity by using the landscape matrix in central-western Mexico and the connectivity for habitat patches considering ensembles of different terrestrial organisms. We aggregated three multispecies connectivity scenarios into a composite corridor scenario. To evaluate which corridors were more important to multispecies connectivity, we used the composite corridor model based on two ways: (1) the contribution of habitat patches that the corridor connects to overall connectivity and (2) the corridor’s capability for facilitating movement across the network of patches. Habitat patches were classified according to their value for the conservation of multispecies connectivity by hybridizing circuit-based and spatial prioritization models for connectivity conservation. We developed current flow models for each species (n = 40) and combined them in four prioritization models corresponding to the three multispecies groups and an all-species group. We found that the corridors having the highest accumulated importance (CI ≥ 58) are located along the protected areas of Pico de Tancítaro and the Monarch Butterfly Biosphere Reserve (Reserva de la Biosfera de la Mariposa Monarca–RBMM, Spanish acronym), which have relatively similar spatial distributions corridors compared to areas with priority for conservation (relative rank test = 0.6). Within those areas, there are permeable sectors with high connectivity retention values that could optimize their ecological function as multispecies corridors. Our approach is applicable to different landscapes, and it allows for identifying priorities for connectivity conservation by integrating landscape elements outside habitat patches.


Journal of Environmental Management | 2018

Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacán, Mexico

M. Lourdes González-Arqueros; Manuel E. Mendoza; Gerardo Bocco; Berenice Solís Castillo

Maps of natural hazards are essential for the prevention or mitigation of disasters. The Nexpa River mountainous basin is in the Sierra-Costa region of the state of Michoacán, Mexico. The dispersed rural settlements in the basin, accessed through a network of mainly minor roads and tracks, are highly vulnerable in cases of catastrophic hydrometeorological events. Our study aimed to map flood zones and assess flood susceptibility in the basin on the basis of geopedology, topography, land cover and land use, to assess the vulnerability of local rural settlements and their network of roads and tracks. The land morphology was mapped and the weighted overlay technique was applied in a geographic information system to generate maps of susceptibility to flooding. Our results showed that 13% of settlements and 7% of the communication network are within flood zones. Maps based on environmental factors showed low to medium susceptibility to flooding. These methods are useful and effective for zones with little or no hydrometeorological information, and they can provide a robust source of information for decision makers regarding land planning to mitigate flood vulnerability.


Environmental Management | 2017

Potential Distribution of Mountain Cloud Forest in Michoacán, Mexico: Prioritization for Conservation in the Context of Landscape Connectivity

Camilo A. Correa Ayram; Manuel E. Mendoza; Andrés Etter; Diego R. Pérez Salicrup

Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.


Trees-structure and Function | 2018

Climatic response of Pinus cembroides Zucc. radial growth in Sierra del Cubo, Guanajuato, Mexico

Teodoro Carlón Allende; Manuel E. Mendoza; José Villanueva Díaz; Yanmei Li

Key messagePinuscembroides exhibits an excellent potential for dendrochronological studies on the basis of statistical parameters and its response to climatic variables, in particular seasonal winter–spring precipitation.AbstractStudies of forest growth under induced climatic variations allow estimating the intensity of impacts on forest ecosystems and understanding them. In the present study, the climatic response of Pinus cembroides radial increase was evaluated based on precipitation and average temperature (maximum, minimum and mean temperature). The study was carried out in Sierra del Cubo, Guanajuato, in the upper course of the Laja River. A correlation response function analysis was used to evaluate P. cembroides growth in response to climatic factors. Correlation analysis indicates that P. cembroides growth is positively associated with precipitation of October and December of the previous year, as well as with January–February, May–August and October of the current-year precipitation. Regarding temperatures, the average minimum temperature of the previous December and of January and May of the current year favored P. cembroides growth. Mean and maximum average temperature had a negative influence on annual radial growth. Response function analysis indicates that P. cembroides response to precipitation was quite unstable for the 1925–2011 period and possibly affected by climatic anomalies recorded over the last decades. The main climatic factors exerting a dominant effect on P. cembroides radial growth are, first, the winter–spring seasonal rainfall and, second, the average winter temperature. P. cembroides forests in Sierra del Cubo are highly affected by environmental variables, and its habitat could decline if winters tend to be drier and temperatures are higher as it is predicted to occur by Intergovernmental Panel of Climate Change models.


Tree-ring Research | 2018

Climatic Signal in Earlywood and Latewood in Conifer Forests in the Monarch Butterfly Biosphere Reserve, Mexico

Teodoro Carlón-Allende; José Villanueva-Díaz; Manuel E. Mendoza; Diego R. Pérez-Salicrup

Abstract Earlywood (EW) and latewood (LW) chronologies can be used to analyze seasonal climatic variation. We constructed and analyzed total ring (RW), EW, and LW ring growth in Abies religiosa and Pinus pseudostrobus trees from the Monarch Butterfly Biosphere Reserve and evaluated their climatic signal (monthly precipitation and mean average, minimum and maximum temperatures) in the growth of tree rings by correlation and response function analyses. Precipitation during October and December of the previous year and during January, February, April, and May of the year of growth had a positive influence in the growth of both P. pseudostrobus and A. religiosa. Mean maximum temperatures had a negative effect on tree growth in both species. Additionally, growth of A. religiosa was more sensitive to variations of mean, minimum, and maximum temperatures in comparison with P. pseudostrobus, and monthly mean minimum temperature was positively correlated with EW and LW series in A. religiosa. We conclude that EW and LW growth of A. religiosa and P. pseudostrobus might be reduced by lower precipitation during the winter-spring season. Consequently, in the eventuality of warmer and drier climate during the latter season as projected by climate change scenarios, growth rates of A. religiosa could become severely affected, negatively impacting the overwintering habitat of the monarch butterfly (Danaus plexippus L.).

Collaboration


Dive into the Manuel E. Mendoza's collaboration.

Top Co-Authors

Avatar

Gerardo Bocco

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Diego R. Pérez-Salicrup

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Erna López Granados

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Camilo A. Correa Ayram

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Teodoro Carlón Allende

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Diego R. Pérez Salicrup

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Christian Prat

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Francisco Bautista

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Teodoro Carlón-Allende

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge