Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Revilla is active.

Publication


Featured researches published by Manuel Revilla.


Genetics Selection Evolution | 2015

Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs

Jordi Corominas; Jorge Ap Marchesi; Anna Puig-Oliveras; Manuel Revilla; Jordi Estellé; E. Alves; J. M. Folch; Maria Ballester

BackgroundIn previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue. The main goal of the current work was to further study the role of ELOVL6 on these traits by analyzing the regulation of the expression of ELOVL6 and the implication of ELOVL6 polymorphisms on meat quality traits in pigs.ResultsHigh-throughput sequencing of BAC clones that contain the porcine ELOVL6 gene coupled to RNAseq data re-analysis showed that two isoforms of this gene are expressed in liver and adipose tissue and that they differ in number of exons and 3’UTR length. Although several SNPs in the 3’UTR of ELOVL6 were associated with palmitic and palmitoleic acid contents, this association was lower than that previously observed with SNP ELOVL6:c.-533C > T. This SNP is in full linkage disequilibrium with SNP ELOVL6:c.-394G > A that was identified in the binding site for estrogen receptor alpha (ERα). Interestingly, the ELOVL6:c.-394G allele is associated with an increase in methylation levels of the ELOVL6 promoter and with a decrease of ELOVL6 expression. Therefore, ERα is clearly a good candidate to explain the regulation of ELOVL6 expression through dynamic epigenetic changes in the binding site of known regulators of ELOVL6 gene, such as SREBF1 and SP1.ConclusionsOur results strongly suggest the ELOVL6:c.-394G > A polymorphism as the causal mutation for the QTL on pig chromosome 8 that affects fatty acid composition in pigs.


Scientific Reports | 2016

Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat

Anna Puig-Oliveras; Manuel Revilla; Anna Castelló; Ana I. Fernández; J. M. Folch; Maria Ballester

The aim of this work is to better understand the genetic mechanisms determining two complex traits affecting porcine meat quality: intramuscular fat (IMF) content and its fatty acid (FA) composition. With this purpose, expression Genome-Wide Association Study (eGWAS) of 45 lipid-related genes associated with meat quality traits in swine muscle (Longissimus dorsi) of 114 Iberian × Landrace backcross animals was performed. The eGWAS identified 241 SNPs associated with 11 genes: ACSM5, CROT, FABP3, FOS, HIF1AN, IGF2, MGLL, NCOA1, PIK3R1, PLA2G12A and PPARA. Three expression Quantitative Trait Loci (eQTLs) for IGF2, ACSM5 and MGLL were identified, showing cis-acting effects, whereas 16 eQTLs had trans regulatory effects. A polymorphism in the ACSM5 promoter region associated with its expression was identified. In addition, strong candidate genes regulating ACSM5, FOS, PPARA, PIK3R1, PLA2G12A and HIF1AN gene expression were also seen. Notably, the analysis highlighted the NR3C1 transcription factor as a strong candidate gene involved in the regulation of the 45 genes analysed. Finally, the IGF2, MGLL, MC2R, ARHGAP6, and NR3C1 genes were identified as potential regulators co-localizing within QTLs for fatness and growth traits in the IBMAP population. The results obtained increase our knowledge in the functional regulatory mechanisms involved in these complex traits.


PLOS ONE | 2014

A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

Anna Puig-Oliveras; Maria Ballester; Jordi Corominas; Manuel Revilla; Jordi Estellé; Ana I. Fernández; Yuliaxis Ramayo-Caldas; J. M. Folch

Background Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. Results The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. Conclusions This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production.


Scientific Reports | 2017

Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs

Maria Ballester; Yuliaxis Ramayo-Caldas; Manuel Revilla; Jordi Corominas; Anna Castelló; Jordi Estellé; Ana I. Fernández; J. M. Folch

In the present study, liver co-expression networks and expression Genome Wide Association Study (eGWAS) were performed to identify DNA variants and molecular pathways implicated in the functional regulatory mechanisms of meat quality traits in pigs. With this purpose, the liver mRNA expression of 44 candidates genes related with lipid metabolism was analysed in 111 Iberian x Landrace backcross animals. The eGWAS identified 92 eSNPs located in seven chromosomal regions and associated with eight genes: CROT, CYP2U1, DGAT1, EGF, FABP1, FABP5, PLA2G12A, and PPARA. Remarkably, cis-eSNPs associated with FABP1 gene expression which may be determining the C18:2(n-6)/C18:3(n-3) ratio in backfat through the multiple interaction of DNA variants and genes were identified. Furthermore, a hotspot on SSC8 associated with the gene expression of eight genes was identified and the TBCK gene was pointed out as candidate gene regulating it. Our results also suggested that the PI3K-Akt-mTOR pathway plays an important role in the control of the analysed genes highlighting nuclear receptors as the NR3C1 or PPARA. Finally, sex-dimorphism associated with hepatic lipid metabolism was identified with over-representation of female-biased genes. These results increase our knowledge of the genetic architecture underlying fat composition traits.


Animal Genetics | 2016

Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits

Maria Ballester; Manuel Revilla; Anna Puig-Oliveras; J. A. P. Marchesi; Anna Castelló; Jordi Corominas; Ana I. Fernández; J. M. Folch

APOA2 is a protein implicated in triglyceride, fatty acid and glucose metabolism. In pigs, the APOA2 gene is located on pig chromosome 4 (SSC4) in a QTL region affecting fatty acid composition, fatness and growth traits. In this study, we evaluated APOA2 as a candidate gene for meat quality traits in an Iberian × Landrace backcross population. The APOA2:c.131T>A polymorphism, located in exon 3 of APOA2 and determining a missense mutation, was associated with the percentage of hexadecenoic acid [C16:1(n-9)], linoleic acid [C18:2(n-6)], α-linolenic acid [C18:3(n-3)], dihomo-gamma-linolenic acid [C20:3(n-6)] and polyunsaturated fatty acids (PUFAs) in backfat. Furthermore, this SNP was associated with the global mRNA expression levels of APOA2 in liver and was used as a marker to determine allelic expression imbalance by pyrosequencing. We determined an overexpression of the T allele in heterozygous samples with a mean ratio of 2.8 (T/A), observing a high variability in the allelic expression among individuals. This result suggests that complex regulatory mechanisms, beyond a single polymorphism (e.g. epigenetic effects or multiple cis-acting polymorphisms), may be regulating APOA2 gene expression.


Scientific Reports | 2018

Expression analysis of candidate genes for fatty acid composition in adipose tissue and identification of regulatory regions

Manuel Revilla; Anna Puig-Oliveras; Daniel Crespo-Piazuelo; Lourdes Criado-Mesas; Anna Castelló; Ana I. Fernández; Maria Ballester; J. M. Folch

The aim of this work was to study the genetic basis of the backfat expression of lipid-related genes associated with meat quality traits in pigs. We performed a genome-wide association study with the backfat gene expression measured in 44 genes by qPCR and the PorcineSNP60 BeadChip genotypes in 115 Iberian x Landrace backcross animals. A total of 193 expression-associated SNPs located in 19 chromosomal regions were associated with expression levels of ACSM5, ELOVL6, FABP4, FADS2, and SLC27A4 genes. Three expression quantitative trail loci (eQTLs) corresponding to ACSM5, FABP4, and FADS2 were classified as cis-acting eQTLs, whereas the remaining 16 eQTLs have trans-regulatory effects. Remarkably, a SNP in the ACSM5 promoter region and a SNP in the 3′UTR region of FABP4 were the most associated polymorphisms with the ACSM5 and FABP4 expression levels, respectively. Moreover, relevant lipid-related genes mapped in the trans-eQTLs regions associated with the ACSM5, FABP4, FADS2, and SLC27A4 genes. Interestingly, a trans-eQTL hotspot on SSC13 regulating the gene expression of ELOVL6, ELOLV5, and SCD, three important genes implicated in the elongation and desaturation of fatty acids, was identified. These findings provide new data to further understand the functional regulatory mechanisms implicated in the variation of fatty acid composition in pigs.


Scientific Reports | 2018

Integrative approach using liver and duodenum RNA - Seq data identifies candidate genes and pathways associated with feed efficiency in pigs

Yuliaxis Ramayo-Caldas; Maria Ballester; Juan Pablo Sánchez; Olga González-Rodríguez; Manuel Revilla; Henry Reyer; Klaus Wimmers; David Torrallardona; Raquel Quintanilla

This study aims identifying candidate genes and pathways associated with feed efficiency (FE) in pigs. Liver and duodenum transcriptomes of 37 gilts showing high and low residual feed intake (RFI) were analysed by RNA-Seq. Gene expression data was explored through differential expression (DE) and weighted gene co-expression network analyses. DE analysis revealed 55 and 112 differentially regulated genes in liver and duodenum tissues, respectively. Clustering genes according to their connectivity resulted in 23 (liver) and 25 (duodenum) modules of genes with a co-expression pattern. Four modules, one in liver (with 444 co-expressed genes) and three in duodenum (gathering 37, 126 and 41 co-expressed genes), were significantly associated with FE indicators. Intra-module analyses revealed tissue-specific candidate genes; 12 of these genes were also identified as DE between individuals with high and low RFI. Pathways enriched by the list of genes showing DE and/or belonging to FE co-expressed modules included response to oxidative stress, inflammation, immune response, lipid metabolism and thermoregulation. Low overlapping between genes identified in duodenum and liver tissues was observed but heat shock proteins were associated to FE in both tissues. Our results suggest tissue-specific rather than common transcriptome regulatory processes associated with FE in pigs.


Scientific Reports | 2018

Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions

Daniel Crespo-Piazuelo; Jordi Estellé; Manuel Revilla; Lourdes Criado-Mesas; Yuliaxis Ramayo-Caldas; C. Óvilo; Ana I. Fernández; Maria Ballester; J. M. Folch

In addition to its value in meat production, the pig is an interesting animal model for human digestive tract studies due to its physiological similarities. The aim of this study was to describe the microbiome composition, distribution and interaction along the Iberian pig intestinal tract and its role in whole-body energy homeostasis. The V3-V4 region of the 16S rRNA gene was amplified and sequenced from the microbiomes of five gut sections (duodenum, jejunum, ileum, and proximal and distal colon) in thirteen castrated male pigs. A total of 1,669 operational taxonomic units distributed in 179 genera were found among all samples. The two most abundant genera in the small intestine were Lactobacillus and Clostridium, while Prevotella was predominant in the colon. The colon samples were more similar among the pigs and richer in species than the small intestine samples were. In the small intestine, the metagenome prediction pointed to rapid internalization and conversion of the available simple carbohydrates for microbial proliferation and maintenance. In the colon, a competition among anaerobic bacteria for plant polysaccharide degradation to produce short chain fatty acids was found. This study confirms that the energy pathways of the gut microbiome differ along its sections and provides a description of the correlations between genera.


PLOS ONE | 2017

A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits

Manuel Revilla; Anna Puig-Oliveras; Anna Castelló; Daniel Crespo-Piazuelo; Ediane Paludo; Ana I. Fernández; Maria Ballester; J. M. Folch; Roberta Davoli

Copy number variations (CNVs) are important genetic variants complementary to SNPs, and can be considered as biomarkers for some economically important traits in domestic animals. In the present study, a genomic analysis of porcine CNVs based on next-generation sequencing data was carried out to identify CNVs segregating in an Iberian x Landrace backcross population and study their association with fatty acid composition and growth-related traits. A total of 1,279 CNVs, including duplications and deletions, were detected, ranging from 106 to 235 CNVs across samples, with an average of 183 CNVs per sample. Moreover, we detected 540 CNV regions (CNVRs) containing 245 genes. Functional annotation suggested that these genes possess a great variety of molecular functions and may play a role in production traits in commercial breeds. Some of the identified CNVRs contained relevant functional genes (e.g., CLCA4, CYP4X1, GPAT2, MOGAT2, PLA2G2A and PRKG1, among others). The variation in copy number of four of them (CLCA4, GPAT2, MOGAT2 and PRKG1) was validated in 150 BC1_LD (25% Iberian and 75% Landrace) animals by qPCR. Additionally, their contribution regarding backfat and intramuscular fatty acid composition and growth–related traits was analyzed. Statistically significant associations were obtained for CNVR112 (GPAT2) for the C18:2(n-6)/C18:3(n-3) ratio in backfat and carcass length, among others. Notably, GPATs are enzymes that catalyze the first step in the biosynthesis of both triglycerides and glycerophospholipids, suggesting that this CNVR may contribute to genetic variation in fatty acid composition and growth traits. These findings provide useful genomic information to facilitate the further identification of trait-related CNVRs affecting economically important traits in pigs.


Genetics Selection Evolution | 2014

New insight into the SSC8 genetic determination of fatty acid composition in pigs

Manuel Revilla; Yuliaxis Ramayo-Caldas; Anna Castelló; Jordi Corominas; Anna Puig-Oliveras; N. Ibáñez-Escriche; María Muñoz; Maria Ballester; J. M. Folch

Collaboration


Dive into the Manuel Revilla's collaboration.

Top Co-Authors

Avatar

J. M. Folch

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Maria Ballester

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Puig-Oliveras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Anna Castelló

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Corominas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Yuliaxis Ramayo-Caldas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jordi Estellé

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Daniel Crespo-Piazuelo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Lourdes Criado-Mesas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge