Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Ballester is active.

Publication


Featured researches published by Maria Ballester.


BioTechniques | 2004

Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals

Maria Ballester; Anna Castelló; Elena Ibáñez; Armand Sánchez; J. M. Folch

In this paper, we describe a rapid and accurate real-time quantitative PCR-based system to determine transgene copy number in transgenic animals. We used the 2(-deltadeltaCt) method to analyze different transgenic lines without the requirement of a control sample previously determined by Southern blot analysis. To determine the transgene copy number in several mouse lines carrying a goat beta-Lactoglobulin transgene, we developed a TaqMan assay in which a goat genomic DNA sample was used as a calibrator. Moreover, we used the glucagon gene as a reference control because this gene is highly conserved between species and amplifies with the same efficiency and sensitivity in goat as in mouse. With this assay, we provide an alternative simple method to determine the transgene copy number, avoiding the traditional and tedious blotting techniques. The assays discrimination ability from our results is of at least six copies and, similar to the limitations of the blotting techniques, the accuracy of the quantification diminishes when the transgene copy number is high.


BMC Genomics | 2012

Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition

Yuliaxis Ramayo-Caldas; Núria Mach; Anna Esteve-Codina; Jordi Corominas; Anna Castelló; Maria Ballester; Jordi Estellé; N. Ibáñez-Escriche; Ana I. Fernández; Miguel Pérez-Enciso; J. M. Folch

BackgroundNew advances in high-throughput technologies have allowed for the massive analysis of genomic data, providing new opportunities for the characterization of the transcriptome architectures. Recent studies in pigs have employed RNA-Seq to explore the transcriptome of different tissues in a reduced number of animals. The main goal of this study was the identification of differentially-expressed genes in the liver of Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition using RNA-Seq.ResultsThe liver transcriptomes of two female groups (H and L) with phenotypically extreme intramuscular fatty acid composition were sequenced using RNA-Seq. A total of 146 and 180 unannotated protein-coding genes were identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L) and 270 (H) lncRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine expression microarrays, therefore showing a strong correlation between RT-qPCR and RNA-Seq data (ranking from 0.79 to 0.96), as well as between microarrays and RNA-Seq (r=0.72). A differential expression analysis between H and L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed among the top three networks, hence suggesting that these genes are interconnected and play an important role in lipid and fatty acid metabolism.ConclusionsIn the present study RNA-Seq was used as a tool to explore the liver transcriptome of pigs with extreme phenotypes for intramuscular fatty acid composition. The differential gene expression analysis showed potential gene networks which affect lipid and fatty acid metabolism. These results may help in the design of selection strategies to improve the sensorial and nutritional quality of pork meat.


Veterinary Research | 2009

Differences in phagocytosis susceptibility in Haemophilus parasuis strains

A. Olvera; Maria Ballester; Miquel Nofrarías; Marina Sibila; Virginia Aragon

Haemophilus parasuis is a colonizer of the upper respiratory tract of healthy pigs, but virulent strains can cause a systemic infection characterized by fibrinous polyserositis, commonly known as Glässer’s disease. The variability in virulence that is observed among H. parasuis strains is not completely understood, since the virulence mechanisms of H. parasuis are largely unknown. In the course of infection, H. parasuis has to survive the host pulmonary defences, which include alveolar macrophages, to produce disease. Using strains from different clinical backgrounds, we were able to detect clear differences in susceptibility to phagocytosis. Strains isolated from the nose of healthy animals were efficiently phagocytosed by porcine alveolar macrophages (PAM), while strains isolated from systemic lesions were resistant to this interaction. Phagocytosis of susceptible strains proceeded through mechanisms independent of a specific receptor, which involved actin filaments and microtubules. In all the systemic strains tested in this study, we observed a distinct capsule after interaction with PAM, indicating a role of this surface structure in phagocytosis resistance. However, additional mechanisms of resistance to phagocytosis should be explored, since we detected different effects of microtubule inhibition among systemic strains.


BMC Genomics | 2013

Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition

Jordi Corominas; Yuliaxis Ramayo-Caldas; Anna Puig-Oliveras; Jordi Estellé; Anna Castelló; Estefania Alves; Ramona N. Pena; Maria Ballester; J. M. Folch

BackgroundIn pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group).ResultsHigh-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes.ConclusionsThese results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.


PLOS ONE | 2012

DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies.

Jordi Argilaguet; Eva Pérez-Martín; Miquel Nofrarías; Carmina Gallardo; Francesc Accensi; Anna Lacasta; Mercedes Mora; Maria Ballester; I. Galindo-Cardiel; Sergio López-Soria; José M. Escribano; Pedro A. Reche; Fernando Rodriguez

The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.


PLOS ONE | 2013

Polymorphism in the ELOVL6 Gene Is Associated with a Major QTL Effect on Fatty Acid Composition in Pigs

Jordi Corominas; Yuliaxis Ramayo-Caldas; Anna Puig-Oliveras; Dafne Pérez-Montarelo; Jose Luis Noguera; J. M. Folch; Maria Ballester

Background The ELOVL fatty acid elongase 6 (ELOVL6), the only elongase related to de novo lipogenesis, catalyzes the rate-limiting step in the elongation cycle by controlling the fatty acid balance in mammals. It is located on pig chromosome 8 (SSC8) in a region where a QTL affecting palmitic, and palmitoleic acid composition was previously detected, using an Iberian x Landrace intercross. The main goal of this work was to fine-map the QTL and to evaluate the ELOVL6 gene as a positional candidate gene affecting the percentages of palmitic and palmitoleic fatty acids in pigs. Methodology and Principal Findings The combination of a haplotype-based approach and single-marker analysis allowed us to identify the main, associated interval for the QTL, in which the ELOVL6 gene was identified and selected as a positional candidate gene. A polymorphism in the promoter region of ELOVL6, ELOVL6:c.-533C>T, was highly associated with the percentage of palmitic and palmitoleic acids in muscle and backfat. Significant differences in ELOVL6 gene expression were observed in backfat when animals were classified by the ELOVL6:c.-533C>T genotype. Accordingly, animals carrying the allele associated with a decrease in ELOVL6 gene expression presented an increase in C16:0 and C16:1(n-7) fatty acid content and a decrease of elongation activity ratios in muscle and backfat. Furthermore, a SNP genome-wide association study with ELOVL6 relative expression levels in backfat showed the strongest effect on the SSC8 region in which the ELOVL6 gene is located. Finally, different potential genomic regions associated with ELOVL6 gene expression were also identified by GWAS in liver and muscle, suggesting a differential tissue regulation of the ELOVL6 gene. Conclusions and Significance Our results suggest ELOVL6 as a potential causal gene for the QTL analyzed and, subsequently, for controlling the overall balance of fatty acid composition in pigs.


The International Journal of Neuropsychopharmacology | 2015

Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans

Ana Elda Maqueda; Marta Valle; Peter H. Addy; Rosa Maria Antonijoan; Montserrat Puntes; Jimena Coimbra; Maria Ballester; Maite Garrido; Mireia González; Judit Claramunt; Steven A. Barker; Matthew W. Johnson; Roland R. Griffiths; Jordi Riba

Background: Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. Methods: A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Results: Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Conclusions: Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans.


PLOS ONE | 2014

Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition

Anna Puig-Oliveras; Yuliaxis Ramayo-Caldas; Jordi Corominas; Jordi Estellé; Dafne Pérez-Montarelo; Nicholas J. Hudson; J. Casellas; J. M. Folch; Maria Ballester

Background Besides having an impact on human health, the porcine muscle fatty acid profile determines meat quality and taste. The RNA-Seq technologies allowed us to explore the pig muscle transcriptome with an unprecedented detail. The aim of this study was to identify differentially-expressed genes between two groups of 6 sows belonging to an Iberian × Landrace backcross with extreme phenotypes according to FA profile. Results We sequenced the muscle transcriptome acquiring 787.5 M of 75 bp paired-end reads. About 85.1% of reads were mapped to the reference genome. Of the total reads, 79.1% were located in exons, 6.0% in introns and 14.9% in intergenic regions, indicating expressed regions not annotated in the reference genome. We identified a 34.5% of the intergenic regions as interspersed repetitive regions. We predicted a total of 2,372 putative proteins. Pathway analysis with 131 differentially-expressed genes revealed that the most statistically-significant metabolic pathways were related with lipid metabolism. Moreover, 18 of the differentially-expressed genes were located in genomic regions associated with IMF composition in an independent GWAS study in the same genetic background. Thus, our results indicate that the lipid metabolism of FAs is differently modulated when the FA composition in muscle differs. For instance, a high content of PUFA may reduce FA and glucose uptake resulting in an inhibition of the lipogenesis. These results are consistent with previous studies of our group analysing the liver and the adipose tissue transcriptomes providing a view of each of the main organs involved in lipid metabolism. Conclusions The results obtained in the muscle transcriptome analysis increase the knowledge of the gene regulation of IMF deposition, FA profile and meat quality, in terms of taste and nutritional value. Besides, our results may be important in terms of human health.


BMC Genomics | 2014

From SNP co-association to RNA co-expression: Novel insights into gene networks for intramuscular fatty acid composition in porcine

Yuliaxis Ramayo-Caldas; Maria Ballester; M. R. S. Fortes; Anna Esteve-Codina; Anna Castelló; Jose Luis Noguera; Ana I. Fernández; Miguel Pérez-Enciso; Antonio Reverter; J. M. Folch

BackgroundFatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans.ResultsThe results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression.ConclusionsOur results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.


Veterinary Research | 2012

VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages

Mar Costa-Hurtado; Maria Ballester; Nuria Galofré-Milà; Ayub Darji; Virginia Aragon

Haemophilus parasuis, a member of the family Pasteurellaceae, is a common inhabitant of the upper respiratory tract of healthy pigs and the etiological agent of Glässer’s disease. As other virulent Pasteurellaceae, H. parasuis can prevent phagocytosis, but the bacterial factors involved in this virulence mechanism are not known. In order to identify genes involved in phagocytosis resistance, we constructed a genomic library of the highly virulent reference strain Nagasaki and clones were selected by increased survival after incubation with porcine alveolar macrophages (PAM). Two clones containing two virulent-associated trimeric autotransporter (VtaA) genes, vtaA8 and vtaA9, respectively, were selected by this method. A reduction in the interaction of the two clones with the macrophages was detected by flow cytometry. Monoclonal antibodies were produced and used to demonstrate the presence of these proteins on the bacterial surface of the corresponding clone, and on the H. parasuis phagocytosis-resistant strain PC4-6P. The effect of VtaA8 and VtaA9 in the trafficking of the bacteria through the endocytic pathway was examined by fluorescence microscopy and a delay was detected in the localization of the vtaA8 and vtaA9 clones in acidic compartments. These results are compatible with a partial inhibition of the routing of the bacteria via the degradative phagosome. Finally, antibodies against a common epitope in VtaA8 and VtaA9 were opsonic and promoted phagocytosis of the phagocytosis-resistant strain PC4-6P by PAM. Taken together, these results indicate that VtaA8 and VtaA9 are surface proteins that play a role in phagocytosis resistance of H. parasuis.

Collaboration


Dive into the Maria Ballester's collaboration.

Top Co-Authors

Avatar

J. M. Folch

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Anna Castelló

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Yuliaxis Ramayo-Caldas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Puig-Oliveras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Manuel Revilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Rodriguez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Corominas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosa Maria Antonijoan

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Armand Sánchez

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge