Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Rojo is active.

Publication


Featured researches published by Manuel Rojo.


Journal of Cell Science | 2004

Organization and dynamics of human mitochondrial DNA

Frédéric Legros; Florence Malka; Paule Frachon; Anne Lombès; Manuel Rojo

Heteroplasmic mutations of mitochondrial DNA (mtDNA) are an important source of human diseases. The mechanisms governing transmission, segregation and complementation of heteroplasmic mtDNA-mutations are unknown but depend on the nature and dynamics of the mitochondrial compartment as well as on the intramitochondrial organization and mobility of mtDNA. We show that mtDNA of human primary and immortal cells is organized in several hundreds of nucleoids that contain a mean of 2-8 mtDNA-molecules each. Nucleoids are enriched in mitochondrial transcription factor A and distributed throughout the entire mitochondrial compartment. Using cell fusion experiments, we demonstrate that nucleoids and respiratory complexes are mobile and diffuse efficiently into mitochondria previously devoid of mtDNA. In contrast, nucleoid-mobility was lower within mitochondria of mtDNA-containing cells, as differently labeled mtDNA-molecules remained spatially segregated in a significant fraction (37%) of the polykaryons. These results show that fusion-mediated exchange and intramitochondrial mobility of endogenous mitochondrial components are not rate-limiting for intermitochondrial complementation but can contribute to the segregation of mtDNA molecules and of mtDNA mutations during cell growth and division.


Journal of Cellular Physiology | 2006

Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1

Young-Sil Yoon; Dong-Sun Yoon; In Kyoung Lim; Yoon Sh; Hae Young Chung; Manuel Rojo; Florence Malka; Mei-Jie Jou; Jean-Claude Martinou; Gyesoon Yoon

Enlarged or giant mitochondria have often been documented in aged tissues although their role and underlying mechanism remain unclear. We report here how highly elongated giant mitochondria are formed in and related to the senescent arrest. The mitochondrial morphology was progressively changed to a highly elongated form during deferoxamine (DFO)‐induced senescent arrest of Chang cells, accompanied by increase of intracellular ROS level and decrease of mtDNA content. Interestingly, under exposure to subcytotoxic doses of H2O2 (200 µM), about 65% of Chang cells harbored elongated mitochondria with senescent phenotypes whereas ethidium bromide (EtBr) (50 ng/ml) only reformed the cristae structure. Elongated giant mitochondria were also observed in TGF β1‐ or H2O2‐induced senescent Mv1Lu cells and in old human diploid fibroblasts (HDFs). In all senescent progresses employed in this study Fis1 protein, a mitochondrial fission modulator, was commonly downexpressed. Overexpression of YFP‐Fis1 reversed both mitochondrial elongation and appearance of senescent phenotypes induced by DFO, implying its critical involvement in the arrest. Finally, we found that direct induction of mitochondrial elongation by blocking mitochondrial fission process with Fis1‐ΔTM or Drp1‐K38A was sufficient to develop senescent phenotypes with increased ROS production. These data suggest that mitochondrial elongation may play an important role as a mediator in stress‐induced premature senescence. J. Cell. Physiol. 209: 468–480, 2006.


Molecular and Cellular Biology | 1997

Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae.

Dieter Kressler; J de la Cruz; Manuel Rojo; Patrick Linder

A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.


Molecular and Cellular Biology | 1998

Dbp6p Is an Essential Putative ATP-Dependent RNA Helicase Required for 60S-Ribosomal-Subunit Assembly in Saccharomyces cerevisiae

Dieter Kressler; Jesús de la Cruz; Manuel Rojo; Patrick Linder

ABSTRACT A previously uncharacterized Saccharomyces cerevisiaeopen reading frame, YNR038W, was analyzed in the context of the European Functional Analysis Network. YNR038W encodes a putative ATP-dependent RNA helicase of the DEAD-box protein family and was therefore named DBP6 (DEAD-box protein 6). Dbp6p is essential for cell viability. In vivo depletion of Dbp6p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase labeling of pre-rRNA and steady-state analysis of pre-rRNA and mature rRNA by Northern hybridization and primer extension show that Dbp6p depletion leads to decreased production of the 27S and 7S precursors, resulting in a depletion of the mature 25S and 5.8S rRNAs. Furthermore, hemagglutinin epitope-tagged Dbp6p is detected exclusively within the nucleolus. We propose that Dbp6p is required for the proper assembly of preribosomal particles during the biogenesis of 60S ribosomal subunits, probably by acting as an rRNA helicase.


RNA | 1998

Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae.

Jesús de la Cruz; Dieter Kressler; Manuel Rojo; David Tollervey; Patrick Linder

Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase.


Journal of Cell Science | 2003

The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics

Gregory Emery; Robert G. Parton; Manuel Rojo; Jean Gruenberg

Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility – two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.


Molecular and Cellular Biology | 1999

Synthetic Lethality with Conditional dbp6 Alleles Identifies Rsa1p, a Nucleoplasmic Protein Involved in the Assembly of 60S Ribosomal Subunits

Dieter Kressler; Monique Doère; Manuel Rojo; Patrick Linder

ABSTRACT Dbp6p is an essential putative ATP-dependent RNA helicase that is required for 60S-ribosomal-subunit assembly in the yeastSaccharomyces cerevisiae (D. Kressler, J. de la Cruz, M. Rojo, and P. Linder, Mol. Cell. Biol. 18:1855–1865, 1998). To identify factors that are functionally interacting with Dbp6p, we have performed a synthetic lethal screen with conditional dbp6 mutants. Here, we describe the cloning and the phenotypic analysis of the previously uncharacterized open reading frame YPL193W, which we renamedRSA1 (ribosome assembly 1). Rsa1p is not essential for cell viability; however, rsa1 null mutant strains display a slow-growth phenotype, which is exacerbated at elevated temperatures. The rsa1 null allele synthetically enhances the mild growth defect of weak dbp6 alleles and confers synthetic lethality when combined with stronger dbp6 alleles. Polysome profile analysis shows that the absence of Rsa1p results in the accumulation of half-mer polysomes. However, the pool of free 60S ribosomal subunits is only moderately decreased; this is reminiscent of polysome profiles from mutants defective in 60S-to-40S subunit joining. Pulse-chase labeling of pre-rRNA in the rsa1 null mutant strain indicates that formation of the mature 25S rRNA is decreased at the nonpermissive temperature. Interestingly, free 60S ribosomal subunits of a rsa1 null mutant strain that was grown for two generations at 37°C are practically devoid of the 60S-ribosomal-subunit protein Qsr1p/Rpl10p, which is required for joining of 60S and 40S subunits (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136–5145, 1997). Moreover, the combination of the Δrsa1 andqsr1-1 mutations leads to a strong synthetic growth inhibition. Finally, a hemagglutinin epitope-tagged Rsa1p localizes predominantly to the nucleoplasm. Together, these results point towards a function for Rsa1p in a late nucleoplasmic step of 60S-ribosomal-subunit assembly.


Biochimica et Biophysica Acta | 1990

The role of contact sites between inner and outer mitochondrial membrane in energy transfer

Klaas Nicolay; Manuel Rojo; Theo Wallimann; R.A. Demel; Ruud Hovius

Three functions have been suggested to be localized in contact sites between the inner and the outer membrane of mitochondria from mammalian cells: (i) transfer of energy from matrix to cytosol through the action of peripheral kinases; (ii) import of mitochondrial precursor proteins; and (iii) transfer of lipids between outer and inner membrane. In the contact site-related energy transfer a number of kinases localized in the periphery of the mitochondrion play a crucial role. Two examples of such kinases are relevant here: (i) hexokinase isoenzyme I which is capable of binding to the outer aspect of the outer membrane; and (ii) the mitochondrial isoenzyme of creatine kinase which is localized in the intermembrane space. Recently, evidence was presented that both hexokinase and creatine kinase are preferentially localized in contact sites (Adams, V. et al. (1989) Biochim. Biophys. Acta 981, 213-225). The aim of the present experiments was two-fold. First, to establish methods which enable the bioenergetic aspects of energy transfer mediated by kinases in contact sites to be measured. In these experiments emphasis was on hexokinase, while 31P-NMR was the major experimental technique. Second, we wanted to develop methods which can give insight into factors playing a role in the formation of contact sites involved in energy transfer. In the latter approach, mitochondrial creatine kinase was studied using monolayer techniques.


Protoplasma | 1999

The p24 family of transmembrane proteins at the interface between endoplasmic reticulum and Golgi apparatus

Gregory Emery; Jean Gruenberg; Manuel Rojo

SummaryThe p24 family of small transmembrane proteins was discovered recently in yeast and mammalian cells, and some of its members have been implicated in biosynthetic protein transport. The p24 proteins are proposed to act on transport vesicles as receptors for coat and/or cargo, but their precise function(s) remain controversial. Here, we describe this protein family, and we review the available experimental data concerning their localization and function. Finally, we hypothesize about a possible role of p24 proteins in organelle morphogenesis.


Molecular and Cellular Biochemistry | 1994

The structure of mitochondrial creatine kinase and its membrane binding properties

Thomas Schnyder; Manuel Rojo; Rolf Furter; Theo Wallimann

The biochemical and biophysical characterization of the mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle is reviewed with emphasis on the structure of the octameric oligomer by electron microscopy and on its membrane binding properties. Information about shape, molecular symmetry and dimensions of the Mi-CK octamer, as obtained by different sample preparation techniques in combination with image processing methods, are compared. The organization of the four dimeric subunits into the Mi-CK complex as apparent in the end-on projections is discussed and the consistently observed high binding affinity of the four-fold symmetric end-on faces towards many support films and towards each other is outlined. A study on the oligomeric state of the enzyme in solution and in intact mitochondria, using chemical crosslinking reagents, is presented together with the results of a search for a possible linkage of Mi-CK with the adenine nucleotide translocator (ANT). The nature of Mi-CK binding to model membranes, demonstrating that rather the octameric than the dimeric subspecies is involved in lipid interaction and membrane contact formation, is resumed and put into relation to our structural observations. The findings are discussed in light of a possible in vivo function of the Mi-CK octamer bridging the gap between outer and inner mitochondrial membranes at the contact sites. (Mol Cell Biochem 133/134: 115–123, 1994)

Collaboration


Dive into the Manuel Rojo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Emery

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Gregory Emery

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús de la Cruz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge