Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuela Girotto is active.

Publication


Featured researches published by Manuela Girotto.


Journal of Hydrometeorology | 2016

A Landsat-Era Sierra Nevada Snow Reanalysis (1985–2015)

Steven A. Margulis; Gonzalo Cortés; Manuela Girotto; Michael Durand

AbstractA newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack...


Journal of Climate | 2017

Assessment of MERRA-2 Land Surface Hydrology Estimates

Rolf H. Reichle; C. Draper; Q. Liu; Manuela Girotto; Sarith P. P. Mahanama; Randal D. Koster; Gabrielle De Lannoy

AbstractThe MERRA-2 atmospheric reanalysis product provides global, 1-hourly estimates of land surface conditions for 1980–present at ~50-km resolution. MERRA-2 uses observations-based precipitation to force the land (unlike its predecessor, MERRA). This paper evaluates MERRA-2 and MERRA land hydrology estimates, along with those of the land-only MERRA-Land and ERA-Interim/Land products, which also use observations-based precipitation. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. Validation against in situ measurements from 220–320 stations in North America, Europe, and Australia shows that MERRA-2 and MERRA-Land have the highest surface and root zone soil moisture skill, slightly higher than that of ERA-Interim...


Journal of Hydrometeorology | 2015

A Particle Batch Smoother Approach to Snow Water Equivalent Estimation

Steven A. Margulis; Manuela Girotto; Gonzalo Cortés; Michael Durand

AbstractThis paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%–82% and 60%–68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like...


Geophysical Research Letters | 2016

Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery

Steven A. Margulis; Gonzalo Cortés; Manuela Girotto; Laurie S. Huning; Dongyue Li; Michael Durand

Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range-wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Nino conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.


Water Resources Research | 2014

Examining spatial and temporal variability in snow water equivalent using a 27 year reanalysis: Kern River watershed, Sierra Nevada

Manuela Girotto; Gonzalo Cortés; Steven A. Margulis; Michael Durand

This paper used a data assimilation framework to estimate spatially and temporally continuous snow water equivalent (SWE) from a 27 year reanalysis (from water year 1985 to 2011) of the Landsat-5 record for the Kern River watershed in the Sierra Nevada, California. The data assimilation approach explicitly treats sources of uncertainty from model parameters, meteorological inputs, and observations. The method is comprised of two main components: (1) a coupled land surface model (LSM) and snow depletion curve (SDC) model, which is used to generate an ensemble of predictions of SWE and fractional snow cover area (FSCA) for a given set of prior (uncertain) inputs, and (2) a retrospective reanalysis step, which updates estimation variables to be consistent with the observed fractional snow cover time series. The final posterior SWE estimate is generated from the LSM-SDC using the posterior estimation variables consistently with all postulated sources of uncertainty in the model, inputs, and observations. A reasonable agreement was found between the SWE reanalysis and in situ SWE observations and streamflow data. The data set was studied to evaluate factors controlling SWE spatial and temporal variability. Elevation was found to be the primary control on spatial patterns of peak-SWE and day-of-peak. The easting coordinate had additional explanatory power, which is hypothesized to be related to rain shadow effects due to the prevailing storm track directions. The spatial patterns were found to be interannually inconsistent. However, drier years and lower elevations were found more variable than wetter years and higher elevations, respectively. Only a very small percentage of the Kern River watershed had a significant trend in peak-SWE and day-of-peak. Trends deemed to be significant were found to be positive (peak-SWE is increasing and day-of-peak occurs later) at higher elevations, but negative (peak-SWE is decreasing and day-of-peak occurs earlier) at lower elevations. The reanalysis approach proved to be useful in terms of identifying subwatershed variability and trends, and could be extended to larger regions and areas where in situ data are sparse or unavailable.


Water Resources Research | 2016

Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model

Manuela Girotto; Gabrielle De Lannoy; Rolf H. Reichle; Matthew Rodell

Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km(sup 2) at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.


Geophysical Research Letters | 2017

Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India

Manuela Girotto; Gabrielle De Lannoy; Rolf H. Reichle; Matthew Rodell; C. Draper; Soumendra Nath Bhanja; Abhijit Mukherjee

This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.


Geophysical Research Letters | 2017

Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability

Augusto Getirana; Sujay V. Kumar; Manuela Girotto; Matthew Rodell

This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for ~22–27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.


Journal of Hydrometeorology | 2017

Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics

Rolf H. Reichle; Gabrielle De Lannoy; Q. Liu; Randal D. Koster; John S. Kimball; Wade T. Crow; Joseph V. Ardizzone; Purnendu Chakraborty; Douglas W. Collins; Austin Conaty; Manuela Girotto; Lucas A. Jones; Jana Kolassa; Hans Lievens; Robert Lucchesi; Edmond B. Smith

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m-3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for O-F residuals, ~0.01 (~0.003) m3 m-3 for surface (root-zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.


Hydrological Processes | 2014

Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques

Manuela Girotto; Steven A. Margulis; Michael Durand

Collaboration


Dive into the Manuela Girotto's collaboration.

Top Co-Authors

Avatar

Rolf H. Reichle

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Matthew Rodell

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Draper

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Q. Liu

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Koster

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge