Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuela Roggiani is active.

Publication


Featured researches published by Manuela Roggiani.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Membrane protein expression triggers chromosomal locus repositioning in bacteria

Elizabeth A. Libby; Manuela Roggiani; Mark Goulian

It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by mutating the start codon, a shift was not observed. Antibiotics that block transcription and translation similarly prevented locus repositioning toward the membrane. We also found that repositioning is relatively rapid and can be detected at positions that are a considerable distance on the chromosome from the gene encoding the membrane protein (>90 kb). Given that membrane protein-encoding genes are distributed throughout the chromosome, their expression may be an important mechanism for maintaining the bacterial chromosome in an expanded and dynamic state.


Annual Review of Genetics | 2015

Chromosome-Membrane Interactions in Bacteria

Manuela Roggiani; Mark Goulian

Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion-concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.


mSphere | 2016

Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

Charlie Y. Mo; Sara A. Manning; Manuela Roggiani; Matthew J. Culyba; Amanda N. Samuels; Paul D. Sniegowski; Mark Goulian; Rahul M. Kohli

Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment. ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.


Nature Communications | 2016

Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

Srujana S. Yadavalli; Jeffrey N. Carey; Rachel S. Leibman; Annie I. Chen; Andrew M. Stern; Manuela Roggiani; Andrew M. Lippa; Mark Goulian

Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system.


Science Translational Medicine | 2017

A role for bacterial urease in gut dysbiosis and Crohn’s disease

Josephine Ni; Ting-Chin David Shen; Eric Z. Chen; Kyle Bittinger; Aubrey Bailey; Manuela Roggiani; Alexandra Sirota-Madi; Elliot S. Friedman; Lillian Chau; Andrew Lin; Ilana Nissim; Justin Scott; Abigail Lauder; Christopher Hoffmann; Gloriany Rivas; Lindsey Albenberg; Robert N. Baldassano; Jonathan Braun; Ramnik J. Xavier; Clary B. Clish; Marc Yudkoff; Hongzhe Li; Mark Goulian; Frederic D. Bushman; James D. Lewis; Gary D. Wu

Bacterial urease activity of the gut microbiota alters nitrogen flux, leading to gut dysbiosis and worsening of colitis in mice. Nitrogen flux and gut dysbiosis Ni et al. used shotgun metagenomic and metabolomic analysis of fecal samples from pediatric patients with Crohn’s disease. They demonstrated an association between disease severity, gut dysbiosis, and free amino acids. A heavy isotope–labeled nitrogen flux analysis showed that bacterial urease activity led to the transfer of host-derived nitrogen to the gut microbiota, boosting amino acid synthesis. Inoculation of a murine host with Escherichia coli engineered to express urease led to dysbiosis associated with worsened immune-mediated colitis and increased amino acid production. A potential role for nitrogen flux in the development of gut dysbiosis suggests that urease may be a potential target for developing treatments for inflammatory bowel diseases. Gut dysbiosis during inflammatory bowel disease involves alterations in the gut microbiota associated with inflammation of the host gut. We used a combination of shotgun metagenomic sequencing and metabolomics to analyze fecal samples from pediatric patients with Crohn’s disease and found an association between disease severity, gut dysbiosis, and bacterial production of free amino acids. Nitrogen flux studies using 15N in mice showed that activity of bacterial urease, an enzyme that releases ammonia by hydrolysis of host urea, led to the transfer of murine host-derived nitrogen to the gut microbiota where it was used for amino acid synthesis. Inoculation of a conventional murine host (pretreated with antibiotics and polyethylene glycol) with commensal Escherichia coli engineered to express urease led to dysbiosis of the gut microbiota, resulting in a predominance of Proteobacteria species. This was associated with a worsening of immune-mediated colitis in these animals. A potential role for altered urease expression and nitrogen flux in the development of gut dysbiosis suggests that bacterial urease may be a potential therapeutic target for inflammatory bowel diseases.


Journal of Bacteriology | 2015

Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay

Manuela Roggiani; Mark Goulian

UNLABELLED Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. IMPORTANCE Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus regulating the variance but not the mean output of a signaling system.


PLOS Genetics | 2017

Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli

Manuela Roggiani; Srujana S. Yadavalli; Mark Goulian

Previous studies have shown that exponentially growing Escherichia coli can detect mild acidity (~pH 5.5) and, in response, synthesize enzymes that protect against severe acid shock. This adaptation is controlled by the EvgS/EvgA phosphorelay, a signal transduction system present in virtually every E. coli isolate whose genome has been sequenced. Here we show that, despite this high level of conservation, the EvgS/EvgA system displays a surprising natural variation in pH-sensing capacity, with some strains entirely non-responsive to low pH stimulus. In most cases that we have tested, however, activation of the EvgA regulon still confers acid resistance. From analyzing selected E. coli isolates, we find that the natural variation results from polymorphisms in the sensor kinase EvgS. We further show that this variation affects the pH response of a second kinase, PhoQ, which senses pH differently from the closely related PhoQ in Salmonella enterica. The within-species diversification described here suggests EvgS likely responds to additional input signals that may be correlated with acid stress. In addition, this work highlights the fact that even for highly conserved sensor kinases, the activities identified from a subset of isolates may not necessarily generalize to other members of the same bacterial species.


Cell | 2018

Regulated Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental Change

Jeffrey N. Carey; Erin L. Mettert; Manuela Roggiani; Kevin S. Myers; Patricia J. Kiley; Mark Goulian


Gastroenterology | 2018

Su1947 - Altering Nitrogen-Sensing in E. Coli Causes Changes in Cellular Aggregation and Biofilm Formation

Josephine Ni; Chiraag Kulkarni; Eric Barash; Mary Ann S. Crissey; Manuela Roggiani; Mark Goulian; Gary D. Wu


Gastroenterology | 2017

Unique Growth Characteristics of E. Coli via the NtrB/NtrC Two-Component System in Vitro vs. in Vivo a Signal Transduction Pathway Associated with Dysbiosis in IBD

Chiraag Kulkarni; Josephine Ni; Eric Barash; Manuela Roggiani; Mark Goulian; Gary D. Wu

Collaboration


Dive into the Manuela Roggiani's collaboration.

Top Co-Authors

Avatar

Mark Goulian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Gary D. Wu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Josephine Ni

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aubrey Bailey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Z. Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongzhe Li

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge