Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maoyi Huang is active.

Publication


Featured researches published by Maoyi Huang.


Nature | 1997

Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating

Yunfeng Lu; Ganguli R; Drewien Ca; Anderson Mt; Brinker Cj; Gong Wl; Guo Yx; Soyez H; Bruce Dunn; Maoyi Huang; Zink Ji

Thin films of surfactant-templated mesoporous materials could find applications in membrane-based separations, selective catalysis and sensors. Above the critical micelle concentration of a bulk silica–surfactant solution, films of mesophases with hexagonally packed one-dimensional channels can be formed at solid–liquid and liquid–vapour interfaces. But this process is slow and the supported films are granular and with the pore channels oriented parallel to the substrate surface, so that transport across the films is not facilitated by the pores. Ogawa has reported a rapid spin-coating procedure for making transparent mesoporous films, but their formation mechanism, microstructure and pore accessibility have not been elucidated. Here we report a sol–gel-based dip-coating method for the rapid synthesis of continuous mesoporous thin films on a solid substrate. The influence of the substrate generates film mesostructures that have no bulk counterparts, such as composites with incipient liquid-crystalline order of the surfactant–silica phase. We are also able to form mesoporous films of the cubic phase, in which the pores are connected in a three-dimensional network that guarantees their accessibility from the film surface. We demonstrate and quantify this accessibility using a surface-acoustic-wave nitrogen-adsorption technique. We use fluorescence depolarization to monitor the evolution of the mesophase in situ, and see a progression through a sequence of lamellar to cubic to hexagonal structures that has not previously been reported.


Journal of Geophysical Research | 2003

A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model

Xu Liang; Zhenghui Xie; Maoyi Huang

[1] This paper describes a new parameterization to represent surface and groundwater interaction dynamics for land surface models. With the new parameterization, effects of surface and groundwater interactions on soil moisture, evapotranspiration, runoff, and recharge can be dynamically taken into account. The new parameterization is implemented into the three-layer variable infiltration capacity (VIC-3L) model, which is a hydrologically based land surface scheme. The new version of VIC (called VIC-ground) is applied to two watersheds in Pennsylvania over multiple years. Results show that VIC-ground can properly simulate the movement of the daily groundwater table over multiple years at the study sites. Preliminary comparisons of VIC simulations with and without consideration of the dynamics of surface and groundwater interactions show an important impact of such interactions on the partitioning of water budget components. In particular, soil moisture of the lower layer from the VIC-ground simulations is generally wetter than that from VIC-3L. For the top thin soil layer and the upper layer of VIC-3L, soil moisture is generally drier in VIC-ground than that in VIC-3L. Such characteristics of VIC-ground result in lower surface runoff peaks and higher base flow, as well as generally less evapotranspiration compared to VIC-3L at the two study sites. Results at both sites show that it takes 3–4 years to have the effects of the initializations of groundwater tables disappear when the groundwater table is initialized to be deeper than the observed level, while it takes much less time (e.g., about 1.5 years) if the groundwater table is initialized to be shallower than the observed level. In addition, the preliminary sensitivity studies at both sites show that there is a more significant persistent signature of the impact of the precipitation when its amount is halved (i.e., 0.5 ppt) than that when its amount is doubled (i.e., 2 ppt). INDEX TERMS: 1655 Global Change: Water cycles (1836); 1833 Hydrology: Hydroclimatology; 1836 Hydrology: Hydrologic budget (1655); 1829 Hydrology: Groundwater hydrology; 1866 Hydrology: Soil moisture; KEYWORDS: surface and groundwater interactions, groundwater table, soil moisture, evaporation, runoff, VIC land surface model Citation: Liang, X., Z. Xie, and M. Huang, A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model, J. Geophys. Res., 108(D16), 8613, doi:10.1029/2002JD003090, 2003.


Journal of Geophysical Research | 2011

Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed

Hong-Yi Li; Maoyi Huang; Mark S. Wigmosta; Yinghai Ke; Andre M. Coleman; L. Ruby Leung; Aihui Wang; Daniel M. Ricciuto

[1] Previous studies using the Community Land Model (CLM) focused on simulating land-atmosphere interactions and water balance on continental to global scales, with limited attention paid to its capability for hydrologic simulations at watershed or regional scales. This study evaluates the performance of CLM 4.0 (CLM4) for hydrologic simulations and explores possible directions of improvement. Specifically, it is found that CLM4 tends to produce unrealistically large temporal variations of runoff for applications at a mountainous catchment in the northwest United States, where subsurface runoff is dominant, as well as at a few flux tower sites spanning a wide range of climate and site conditions in the United States. Runoff simulations from CLM4 can be improved by (1) increasing spatial resolution of the land surface representations and (2) calibrating model parameter values. We also demonstrate that runoff simulations may be improved by implementing alternative runoff generation schemes such as those from the variable infiltration capacity (VIC) model or the TOPMODEL formulations with a more general power law-based transmissivity profile, which will be explored in future studies. This study also highlights the importance of evaluating both energy and water fluxes in the application of land surface models across multiple scales.


Journal of Hydrometeorology | 2014

Modeling the Effects of Groundwater-Fed Irrigation on Terrestrial Hydrology over the Conterminous United States

Guoyong Leng; Maoyi Huang; Qiuhong Tang; Huilin Gao; L. Ruby Leung

Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land‐ atmosphere feedbacks. In this study, the authors incorporated a groundwater withdrawal scheme into the Community Land Model, version 4 (CLM4). To simulate the impact of irrigation realistically, they calibrated the CLM4 simulated irrigation amount against observations from agriculture censuses at the county scale over the conterminous United States. The water used for irrigation was then removed from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. On the basis of the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. The results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance are found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. The results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.


Journal of Hydrometeorology | 2013

A Physically Based Runoff Routing Model for Land Surface and Earth System Models

Hong-Yi Li; Mark S. Wigmosta; Huan Wu; Maoyi Huang; Yinghai Ke; Andre M. Coleman; L. Ruby Leung

AbstractA new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a “tributary subnetwork” before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration. MOSART has been applied to the Columbia River basin at ⅙°, ⅛°, ¼°, and ½° spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a post...


Journal of Hydrometeorology | 2013

A Modeling Study of Irrigation Effects on Surface Fluxes and Land–Air–Cloud Interactions in the Southern Great Plains

Yun Qian; Maoyi Huang; Ben Yang; Larry K. Berg

AbstractIn this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (ZLCL) and mixed-layer depth. The decrease in ZLCL is larger than the decrease in mixed-layer depth, suggesting an increas...


Global Biogeochemical Cycles | 2015

Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

Hanqin Tian; Chaoqun Lu; Jia Yang; Kamaljit Banger; Deborah N. Huntzinger; Christopher R. Schwalm; Anna M. Michalak; R. B. Cook; Philippe Ciais; Daniel J. Hayes; Maoyi Huang; Akihiko Ito; Atul K. Jain; Huimin Lei; Jiafu Mao; Shufen Pan; Wilfred M. Post; Shushi Peng; Benjamin Poulter; Wei Ren; Daniel M. Ricciuto; Kevin Schaefer; Xiaoying Shi; Bo Tao; Weile Wang; Yaxing Wei; Qichun Yang; Bowen Zhang; Ning Zeng

Abstract Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land‐atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process‐based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century‐long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project and two observation‐based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr−1 with a median value of 51 Pg C yr−1 during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross‐model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from −70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble‐estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.


Climatic Change | 2015

Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)

Ian Kraucunas; Leon E. Clarke; James A. Dirks; John E. Hathaway; Mohamad Hejazi; Kathy Hibbard; Maoyi Huang; Chunlian Jin; Michael Cw Kintner-Meyer; Kerstin Kleese van Dam; Ruby Leung; Hong-Yi Li; Richard H. Moss; Marty J. Peterson; Jennie S. Rice; Michael J. Scott; Allison M. Thomson; Nathalie Voisin; Tristram O. West

The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture and land use, socioeconomics, and energy systems using a flexible coupling approach. Stakeholder decision support needs underpin the application of the platform to regional issues, and an uncertainty characterization process is used to identify robust decisions. The platform can be customized to inform a variety of complex questions, such as how a policy in one sector might affect the ability to meet climate mitigation targets or adaptation goals in another sector. Current numerical experiments focus on the eastern United States, but the framework is designed to be regionally flexible. This paper provides a high-level overview of PRIMA’s functional capabilities and describes some key challenges and opportunities associated with integrated regional modeling.


Journal of Geophysical Research | 2014

Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed

Xitian Cai; Zong-Liang Yang; Youlong Xia; Maoyi Huang; Helin Wei; L. Ruby Leung; Michael B. Ek

This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relative to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.


Environmental Research Letters | 2013

Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model

Xiaoying Shi; Jiafu Mao; Peter E. Thornton; Maoyi Huang

Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Compared to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.

Collaboration


Dive into the Maoyi Huang's collaboration.

Top Co-Authors

Avatar

L. Ruby Leung

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhangshuan Hou

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hong-Yi Li

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Jiafu Mao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Ricciuto

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaoying Shi

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Laura Painton Swiler

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Michalak

Carnegie Institution for Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge