Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoying Shi is active.

Publication


Featured researches published by Xiaoying Shi.


Global Change Biology | 2015

Detection and attribution of vegetation greening trend in China over the last 30 years

Shilong Piao; Guodong Yin; Jianguang Tan; Lei Cheng; Mengtian Huang; Yue Li; Ronggao Liu; Jiafu Mao; Ranga B. Myneni; Shushi Peng; Ben Poulter; Xiaoying Shi; Zhiqiang Xiao; Ning Zeng; Zhenzhong Zeng; Ying-Ping Wang

The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of Chinas afforestation program in explaining the spatial patterns of trend in vegetation growth.


Nature Communications | 2014

Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity.

Shilong Piao; Huijuan Nan; Chris Huntingford; Philippe Ciais; Pierre Friedlingstein; Stephen Sitch; Shushi Peng; Anders Ahlström; Josep G. Canadell; Nan Cong; Sam Levis; Peter E. Levy; Lingli Liu; Mark R. Lomas; Jiafu Mao; Ranga B. Myneni; Philippe Peylin; Ben Poulter; Xiaoying Shi; Guodong Yin; Nicolas Viovy; Tao Wang; Wang X; Soenke Zaehle; Ning Zeng; Zhenzhong Zeng; Anping Chen

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.


Journal of Climate | 2012

Remote Sensing Evaluation of CLM4 GPP for the Period 2000–09*

Jiafu Mao; Peter E. Thornton; Xiaoying Shi; Maosheng Zhao; Wilfred M. Post

AbstractRemote sensing can provide long-term and large-scale products helpful for ecosystem model evaluation. The authors compare monthly gross primary production (GPP) simulated by the Community Land Model, version 4 (CLM4) at a half-degree resolution with satellite estimates of GPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product (MOD17) for the 10-yr period January 2000–December 2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distributions, amplitude and phase of the annual cycle, and intraannual and interannual GPP variability and their responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of GPP for tropical evergreen forests. CLM4 has a longer carbon uptake period than MODIS for most plant functional types (PFTs) with an earlier onset of GPP in spring and a later decline of GPP in...


Global Biogeochemical Cycles | 2015

Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

Hanqin Tian; Chaoqun Lu; Jia Yang; Kamaljit Banger; Deborah N. Huntzinger; Christopher R. Schwalm; Anna M. Michalak; R. B. Cook; Philippe Ciais; Daniel J. Hayes; Maoyi Huang; Akihiko Ito; Atul K. Jain; Huimin Lei; Jiafu Mao; Shufen Pan; Wilfred M. Post; Shushi Peng; Benjamin Poulter; Wei Ren; Daniel M. Ricciuto; Kevin Schaefer; Xiaoying Shi; Bo Tao; Weile Wang; Yaxing Wei; Qichun Yang; Bowen Zhang; Ning Zeng

Abstract Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land‐atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process‐based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century‐long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project and two observation‐based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr−1 with a median value of 51 Pg C yr−1 during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross‐model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from −70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble‐estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.


Remote Sensing | 2013

Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982–2009

Jiafu Mao; Xiaoying Shi; Peter E. Thornton; Forrest M. Hoffman; Zaichun Zhu; Ranga B. Myneni

Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigated percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitation functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. A series of factorial experiments were specially-designed to isolate and quantify contributions to LAI trend from different external forcings such as climate variation, CO2, nitrogen deposition and land use and land cover change. The climate-only simulation confirms that climate change, particularly the asymmetry of land temperature variation, can explain the latitudinal pattern of LAI change. CO2 fertilization during the last three decades was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.


Environmental Research Letters | 2013

Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model

Xiaoying Shi; Jiafu Mao; Peter E. Thornton; Maoyi Huang

Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Compared to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.


Environmental Research Letters | 2015

Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

Jiafu Mao; Wenting Fu; Xiaoying Shi; Daniel M. Ricciuto; Joshua B. Fisher; Robert E. Dickinson; Yaxing Wei; Willis Shem; Shilong Piao; Kaicun Wang; Christopher R. Schwalm; Hanqin Tian; Mingquan Mu; Altaf Arain; Philippe Ciais; R. B. Cook; Yongjiu Dai; Daniel J. Hayes; Forrest M. Hoffman; Maoyi Huang; Suo Huang; Deborah N. Huntzinger; Akihiko Ito; Atul K. Jain; Anthony W. King; Huimin Lei; Chaoqun Lu; Anna M. Michalak; N. C. Parazoo; Changhui Peng

We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increasing trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreasing trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increasing nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.


Global Biogeochemical Cycles | 2014

Impact of large‐scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data

Jakob Zscheischler; Anna M. Michalak; Christopher R. Schwalm; Miguel D. Mahecha; Deborah N. Huntzinger; Markus Reichstein; Gwenaëlle Berthier; Philippe Ciais; R. B. Cook; Bassil El-Masri; Maoyi Huang; Akihiko Ito; Atul K. Jain; Anthony W. King; Huimin Lei; Chaoqun Lu; Jiafu Mao; Shushi Peng; Benjamin Poulter; Daniel M. Ricciuto; Xiaoying Shi; Bo Tao; Hanqin Tian; Nicolas Viovy; Weile Wang; Yaxing Wei; Jia Yang; Ning Zeng

Understanding the role of climate extremes and their impact on the carbon (C) cycle is increasingly a focus of Earth system science. Climate extremes such as droughts, heat waves, or heavy precipitation events can cause substantial changes in terrestrial C fluxes. On the other hand, extreme changes in C fluxes are often, but not always, driven by extreme climate conditions. Here we present an analysis of how extremes in temperature and precipitation, and extreme changes in terrestrial C fluxes are related to each other in 10 state-of-the-art terrestrial carbon models, all driven by the same climate forcing. We use model outputs from the North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). A global-scale analysis shows that both droughts and heat waves translate into anomalous net releases of CO2 from the land surface via different mechanisms: Droughts largely decrease gross primary production (GPP) and to a lower extent total respiration (TR), while heat waves slightly decrease GPP but increase TR. Cold and wet periods have a smaller opposite effect. Analyzing extremes in C fluxes reveals that extreme changes in GPP and TR are often caused by strong shifts in water availability, but for extremes in TR shifts in temperature are also important. Extremes in net CO2 exchange are equally strongly driven by deviations in temperature and precipitation. Models mostly agree on the sign of the C flux response to climate extremes, but model spread is large. In tropical forests, C cycle extremes are driven by water availability, whereas in boreal forests temperature plays a more important role. Models are particularly uncertain about the C flux response to extreme heat in boreal forests.


Journal of Climate | 2013

Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change

Andrew D. Jones; William D. Collins; James A. Edmonds; Margaret S. Torn; Anthony C. Janetos; Katherine Calvin; Allison M. Thomson; Louise M. Chini; Jiafu Mao; Xiaoying Shi; Peter E. Thornton; George C. Hurtt; Marshall A. Wise

AbstractProposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for phase 5 of the Coupled Model Intercomparison Project (CMIP5) representative concentration pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and an alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-Use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover than the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W m−2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to iden...


Journal of Geophysical Research | 2014

A worldwide analysis of spatiotemporal changes in water balance‐based evapotranspiration from 1982 to 2009

Zhenzhong Zeng; Tao Wang; Feng Zhou; Philippe Ciais; Jiafu Mao; Xiaoying Shi; Shilong Piao

A satellite-based water balance method is developed to model global evapotranspiration (ET) through coupling a water balance (WB) model with a machine-learning algorithm (the model tree ensemble, MTE) (hereafterWB-MTE). TheWB-MTE algorithmwas firstly trained by combiningmonthlyWB-estimated basin ET with the potential drivers (e.g., radiation, temperature, precipitation, wind speed, and vegetation index) across 95 large river basins (5824 basin-months) and then applied to establish global monthly ETmaps at a spatial resolution of 0.5° from 1982 to 2009. The global land ET estimated from WB-MTE has an annual mean of 593±17mm for 1982–2009, with a spatial distribution consistent with previous studies in all latitudes but the tropics. The ET estimated by WB-MTE also shows significant linear trends in both annual and seasonal global ET during 1982–2009, though the trends seem to have stalled after 1998. Moreover, our study presents a striking difference from the previous ones primarily in the magnitude of ET estimates during the wet season particularly in the tropics, where ET is highly uncertain due to lack of direct measurements. This may be tied to their lack of proper consideration to solar radiation and/or the rainfall interception process. By contrast, in the dry season, our estimate of ET compares well with the previous ones, both for the mean state and the variability. If we are to reduce the uncertainties in estimating ET, these results emphasize the necessity of deploying more observations during the wet season, particularly in the tropics.

Collaboration


Dive into the Xiaoying Shi's collaboration.

Top Co-Authors

Avatar

Jiafu Mao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Ricciuto

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Peter E. Thornton

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaxing Wei

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Benjamin Poulter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Michalak

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge