Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mar Fernández-Gutiérrez is active.

Publication


Featured researches published by Mar Fernández-Gutiérrez.


Biomaterials | 2014

PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus.

Nina Dinjaski; Mar Fernández-Gutiérrez; Shivaram Selvam; Francisco J. Parra-Ruiz; Susan M. Lehman; Julio San Román; Ernesto García; José Luis García; Andrés J. García; María Auxiliadora Prieto

Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial.


Acta Biomaterialia | 2013

Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics.

Mar Fernández-Gutiérrez; Enrique Olivares; Gemma Pascual; Juan M. Bellón; Julio San Román

The application of bioactive meshes in abdominal surgery for the repair of hernias is an increasing clinical activity in a wide sector of the population. The main secondary effect is the appearance of infections from bacteria, specifically Staphylococcus aureus and S. epidermidis. This paper describes the development and application of low-density polypropylene meshes coated with a biocompatible and resorbable polymer as a controlled release system of the antibiotic vancomycin. The polymeric coating (a non-cross-linked copolymer of 2-hydroxyethyl methacrylate and 2-acrylamido-2-methylpropanesulfonic acid) has a thickness of 14-15μm and contains 0.32mgcm(-2) of the antibiotic vancomycin. The in vitro experiments demonstrate the excellent inhibitory character of the coated meshes loaded with the antibiotic, following the standard protocol of inhibition of halo in agar diffusion test. This inhibitory effect is maintained for a relatively long period (at least 14days) with a low concentration of antibiotic. The acrylic polymer system regulates the release of the antibiotic with a rate of 24μgh(-1), due to its slow dissolution in the medium. Experiments in vivo, based on the implantation of coated meshes, demonstrate that the system controls the infection in the animal (rabbits) for at least 30days. The concentration of antibiotic in the blood stream of the rabbits was below the detection limit of the analytical technique (<1-2μgml(-1)), which demonstrates that the antibiotic is released in the local area of the implant and remains concentrated at the implantation site, without diffusion to the blood stream. The systems can be applied to other medical devices and implants for the application of new-generation antibiotics in a controlled release and targeted applications.


RSC Advances | 2014

Macroporous and nanometre scale fibrous PLA and PLA–HA composite scaffolds fabricated by a bio safe strategy

Aurelio Salerno; Mar Fernández-Gutiérrez; Julio San Román del Barrio; Concepción Domingo Pascual

The present study deals with the design, fabrication and characterization of porous scaffolds for tissue engineering made of polylactic acid (PLA) and PLA containing hydroxyapatite (HA) nanoparticles. The main novelty relies on the fact that the fabrication of the scaffolds has been achieved avoiding totally the use of toxic chemicals. In particular, the scaffolds are obtained by combining both thermal induced phase separation (TIPS) using ethyl lactate (EL) solutions and supercritical CO2 (scCO2) drying processes. Furthermore, gelatin particles have been used as a leachable porogen and combined with the previous processes to improve the control of the pore structure features of the scaffolds. The results show that the developed technique allows for the fabrication of porous PLA scaffolds with HA concentrations up to 30 wt%. Furthermore, these scaffolds are characterized by an overall porosity as high as 98% and a double scale pore structure. In particular, the appropriate control of the TIPS process and the scCO2 drying allowed for the development of nanoscale fibrous PLA and PLA–HA structures starting from PLA/EL solutions. Concomitantly, the proper selection of the size range of gelatin particles as well as their spatial distribution in the mixture allowed imprinting an interconnected network of large pores inside the scaffolds.


Biomacromolecules | 2010

Bioactive polymeric systems with platelet antiaggregating activity for the coating of vascular devices.

Gema Rodríguez; Mar Fernández-Gutiérrez; Juan Parra; A. López-Bravo; N.G. Honduvilla; Julia Buján; Marcelo Molina; Luis Duocastella; J. San Román

The preparation, characterization, and analysis of physicochemical and biological properties of a new bioactive polymer system, based on a copolymer of an acrylic derivative of triflusal (a molecule with chemical structure related to aspirin with antiaggregating activity for platelets) is described and evaluated as thin bioactive coating for vascular grafts and coronary stents. The acrylic monomer derived from triflusal (THEMA) provides random copolymers when it is polymerized with butyl acrylate (BA), according to their reactivity ratios, r(THEMA) = 1.05 and r(BA) = 0.33. The copolymer THBA70, containing a molar composition f(THEMA) = 0.45 and f(BA) = 0.55 presents the optimal properties of stability, flexibility, and adhesion, with a T(g) = 21 ± 2 °C, to be applied as bioactive and biostable coatings for vascular grafts and coronary stents. Thin films of this copolymer system present an excellent biocompatibility and a good inherent antiaggregant activity for platelets.


International Journal of Pharmaceutics | 2017

Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections

Francisco J. Parra-Ruiz; Álvaro González-Gómez; Mar Fernández-Gutiérrez; Juan Parra; J. García-García; G. Azuara; B. de la Torre; Julia Buján; B. Ibarra; L. Duocastella-Codina; M. Molina-Crisol; Blanca Vázquez-Lasa; J. San Román

The incidence increase of infections in patients with hip or knee implants with resistant pathogens (mainly some S. coagulase-negative and gram positive bacteria) demands advanced antibiotic loaded formulations. In this paper, we report the design of new biantibiotic acrylic bone cements for in situ delivery. They include a last generation antibiotic (daptomycin or linezolid) in combination with vancomycin and are performed based on a novel modification of the Palacos R® acrylic bone cement, which is based on two components, a liquid (methyl methacrylate) and a solid (polymeric phase). Hence, the solid component of the experimental formulations include 45wt% of microparticles of poly(D,L-lactic-co-glycolic) acid, 55wt% of poly(methyl methacrylate) beads and supplements (10wt-% each) of antibiotics. These formulations provide a selective and excellent control of the local release of antibiotics during a long time period (up to 2 months), avoiding systemic dissemination. The antimicrobial activity of the advanced spacers tested against S. aureus shows that single doses would be enough for the control of the infection. In vitro biocompatibility of cements on human osteoblasts is ensured. This paper is mainly focused on the preparation and characterization of cements and the studies of elution kinetics and bactericidal effects. Developed formulations are proposed as spacers for the treatment of infected arthroplasties, but also, they could be applied in other antibiotic devices to treat relevant bone-related infection diseases.


Journal of Bioactive and Compatible Polymers | 2014

Amphiphilic polysaccharide nanocarriers with antioxidant properties

Ornella Bossio; Laura G. Gómez-Mascaraque; Mar Fernández-Gutiérrez; Blanca Vázquez-Lasa; Julio San Román

The development of self-assembled nanocarriers for the encapsulation of hydrophobic antioxidants is of growing interest. Self-assembled amphiphilic chitosan conjugate nanocarriers that stabilize antioxidants were prepared based on the concept that both the nanocarrier and the antioxidant bear similar hydrophobic moieties able to establish hydrophobic interactions. This work describes the preparation and characterization of a system consisting of a palmitoyl chitosan conjugate and retinyl palmitate. Palmitic acid was coupled to chitosan using a carbodiimide-mediated coupling reaction, and two different palmitoyl chitosan conjugates were obtained by varying the coupling system. Palmitoyl chitosan conjugates self-assembled to form nanoparticles in aqueous medium varying in mean average diameter (Dh) between 200 and 437 nm. Retinyl palmitate–loaded nanoparticles were prepared by a solvent displacement method using dialysis, with loading efficiencies of 77.5% and 88.6%, loading contents of 12.6% and 14.6%, and Dh values of approximately 280 nm. The zeta potential (ζ) of all palmitoyl chitosan nanoparticle were above 25 mV, but ζ slightly increased in the retinyl palmitate–loaded nanoparticle. Antioxidant activity of loaded nanoparticles was confirmed using the 1,1-diphenyl-2-picryl-hydrazyl radical scavenging assay. The in vitro cytotoxicity of blank and loaded nanoparticles was determined using fibroblasts of human embryonic skin. All nanoparticles were not cytotoxic when they were tested with methylthiazol tetrazolium and lactate dehydrogenase tests. The obtained results suggest that the system has potential as a nanocarrier for dermal application. Additionally, the approach considered in this article can be expanded to other nanocarrier/antioxidant systems.


Biomacromolecules | 2010

Polymeric drugs based on random copolymers with antimitotic activity.

M.L. López-Donaire; J. Parra-Cáceres; Mar Fernández-Gutiérrez; Blanca Vázquez-Lasa; J. San Román

Polymeric drugs based on random copolymers with antimitotic activity were obtained by free radical copolymerization of oleyl 2-acetamido-2-deoxy-α-d-glucopyranoside methacrylate (OAGMA) and 2-ethyl-(2-pyrrolidone) methacrylate (EPM) at low and high conversion and analyzed in terms of microstructure, physicochemical, and biological properties. Reactivity ratios of monomers were found to be r(OAGMA) = 1.34 and r(EPM) = 0.98, indicating the obtaining of statistical copolymers with random sequence distribution of the comonomeric units in the macromolecular chains. The glass transition temperature of the copolymers presents a negative deviation from the predicted values according to the Fox equation, suggesting a higher flexibility of the alternating diad. Copolymeric systems with OAGMA contents between 10-50 mol % presented thermosensitive behavior in a heating process showing cloud point temperatures (CPT) in the range 45-28 °C with increasing OAGMA content and hysteresis in one heating-and-cooling cycle. In vitro glycolipid release studies revealed the stability of the ester group in culture medium. The polymeric drugs with 30 and 50 mol % OAGMA presented antimitotic activity on a human glioblastoma line, but they were less toxic on normal human fibroblast cultures.


Acta Biomaterialia | 2010

A study on partially biodegradable microparticles as carriers of active glycolipids

M.L. López-Donaire; Mar Fernández-Gutiérrez; J. Parra-Cáceres; Blanca Vázquez-Lasa; I. García-Álvarez; Alfonso Fernández-Mayoralas; J. San Román

This paper describes a study on the preparation and characterisation of partially biodegradable microparticles of poly(epsilon-caprolactone)/poly(ethyl methacrylate) (PCL/PEMA) as carriers of synthetic glycolipids with antimitotic activity against brain tumour cells. Microparticles prepared by suspension polymerisation of methacrylate in the presence of already polymerised PCL showed a predominantly spherical but complex morphology, with segregation of PCL micro/nano-domains towards the surface. Small diameter discs were prepared by compression moulding of blends of microparticles and the active principle under mild conditions. The in vitro behaviour of the discs and release of the glycolipid were studied in different simulated fluid models. Ingress of fluids increased with increasing hydrophobicity of the medium. Release of the glycolipid was sustained in all fluids, the most prolonged profile being in human synovial fluid and phosphate-buffered saline modified with 20 vol.% dioxane. Slow disintegration of the discs and partial degradation of the microparticles was evident in accelerated studies. The antimitotic activity of glycolipid released from the discs was proved against a human glioblastoma line. This activity, along with selectivity against human fibroblasts, could be controlled by the amount of drug charged in the disc.


Carbohydrate Polymers | 2018

A holistic approach to unravelling chondroitin sulfation: Correlations between surface charge, structure and binding to growth factors

Raúl Benito-Arenas; Ernesto Doncel-Pérez; Mar Fernández-Gutiérrez; Leoncio Garrido; Eduardo García-Junceda; Julia Revuelta; Agatha Bastida; Alfonso Fernández-Mayoralas

Chondroitin sulfate (CS) is a relevant family of polysaccharides that participates in a large variety of biological events that are related to neural processes by regulating various growth factors through the pattern and degree of sulfation of the polysaccharide. However, their own complexity makes their optimization for biomedical applications a difficult undertaking. Thus, a different perspective has to be taken. Herein, we show that the particular sulfate distribution within the disaccharide repeating-unit plays a key role in the binding of growth factors (GFs). In particular, this disposition modulates the surface charge of the helical structure that, interestingly, has a significant influence on the binding capacity of CSs with several GFs. This fact should be carefully considered in the design of new ligands with improved activity as GFs ligands.


Journal of Supercritical Fluids | 2010

Preparation in supercritical CO2 of porous poly(methyl methacrylate)-poly(l-lactic acid) (PMMA-PLA) scaffolds incorporating ibuprofen

Diego Velasco; L. Benito; Mar Fernández-Gutiérrez; J. San Román; Carlos Elvira

Collaboration


Dive into the Mar Fernández-Gutiérrez's collaboration.

Top Co-Authors

Avatar

J. San Román

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Blanca Vázquez-Lasa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Julio San Román

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Parra-Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Parra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio San Román del Barrio

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge