Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marat Alimzhanov is active.

Publication


Featured researches published by Marat Alimzhanov.


Cancer Cell | 2009

The JAK2 Inhibitor AZD1480 Potently Blocks Stat3 Signaling and Oncogenesis in Solid Tumors

Michael Hedvat; Dennis Huszar; Andreas Herrmann; Joseph M. Gozgit; Anne Schroeder; Adam Sheehy; Ralf Buettner; David Proia; Claudia M. Kowolik; Hong Xin; Brian Armstrong; Geraldine Bebernitz; Shaobu Weng; Lin Wang; Minwei Ye; Kristen McEachern; Huawei Chen; Deborah Morosini; Kirsten Bell; Marat Alimzhanov; Stephanos Ioannidis; Patricia McCoon; Zhu A. Cao; Hua Yu; Richard Jove; Michael Zinda

Persistent activation of Stat3 is oncogenic and is prevalent in a wide variety of human cancers. Chronic cytokine stimulation is associated with Stat3 activation in some tumors, implicating cytokine receptor-associated Jak family kinases. Using Jak2 inhibitors, we demonstrate a central role of Jaks in modulating basal and cytokine-induced Stat3 activation in human solid tumor cell lines. Inhibition of Jak2 activity is associated with abrogation of Stat3 nuclear translocation and tumorigenesis. The Jak2 inhibitor AZD1480 suppresses the growth of human solid tumor xenografts harboring persistent Stat3 activity. We demonstrate the essential role of Stat3 downstream of Jaks by inhibition of tumor growth using short hairpin RNA targeting Stat3. Our data support a key role of Jak kinase activity in Stat3-dependent tumorigenesis.


Journal of Medicinal Chemistry | 2011

Discovery of 5-Chloro-N2-[(1S)-1-(5-Fluoropyrimidin-2-Yl) Ethyl]-N4-(5-Methyl-1H-Pyrazol-3-Yl)Pyrimidine-2,4-Diamine (Azd1480) as a Novel Inhibitor of the Jak/Stat Pathway

Stephanos Ioannidis; Michelle L. Lamb; Tao Wang; Lynsie Almeida; Michael Howard Block; Audrey Davies; Bo Peng; Mei Su; Hai-Jun Zhang; Ethan Hoffmann; Caroline Rivard; Isabelle Green; Tina Howard; Hannah Pollard; Jon Read; Marat Alimzhanov; Geraldine A. Bebernitz; Kirsten Bell; Minwei Ye; Dennis Huszar; Michael Zinda

The myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are a heterogeneous but related group of hematological malignancies characterized by clonal expansion of one or more myeloid lineages. The discovery of the Jak2 V617F gain of function mutation highlighted Jak2 as a potential therapeutic target in the MPNs. Herein, we disclose the discovery of a series of pyrazol-3-yl pyrimidin-4-amines and the identification of 9e (AZD1480) as a potent Jak2 inhibitor. 9e inhibits signaling and proliferation of Jak2 V617F cell lines in vitro, demonstrates in vivo efficacy in a TEL-Jak2 model, has excellent physical properties and preclinical pharmacokinetics, and is currently being evaluated in Phase I clinical trials.


Cancer immunology research | 2015

Identification and Characterization of MEDI4736, an Antagonistic Anti–PD-L1 Monoclonal Antibody

Ross Stewart; Michelle Morrow; Scott A. Hammond; Kathy Mulgrew; Danielle Marcus; Edmund Poon; Amanda Watkins; Stefanie Mullins; Matthieu Chodorge; John Andrews; David Bannister; Emily Dick; Nicola Crawford; Julie Parmentier; Marat Alimzhanov; John Babcook; Ian Foltz; Andrew Buchanan; Vahe Bedian; Robert W. Wilkinson; Matthew McCourt

A human antibody to PD-L1, engineered to eliminate Fc effector functions, which potently inhibits PD-L1 function, is in phase III clinical trials. Its characterization here provides clinicians and researchers with a basis for understanding and interpreting clinical trial results. Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti–PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti–CTLA-4, anti–PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR. Cancer Immunol Res; 3(9); 1052–62. ©2015 AACR.


Journal of Medicinal Chemistry | 2014

Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitors.

Qibin Su; Stephanos Ioannidis; Claudio Chuaqui; Lynsie Almeida; Marat Alimzhanov; Geraldine A. Bebernitz; Kirsten Bell; Michael Howard Block; Tina Howard; Shan Huang; Dennis Huszar; Jon Read; Caroline Rivard Costa; Jie Shi; Mei Su; Minwei Ye; Michael Zinda

Structure based design, synthesis, and biological evaluation of a novel series of 1-methyl-1H-imidazole, as potent Jak2 inhibitors to modulate the Jak/STAT pathway, are described. Using the C-ring fragment from our first clinical candidate AZD1480 (24), optimization of the series led to the discovery of compound 19a, a potent, orally bioavailable Jak2 inhibitor. Compound 19a displayed a high level of cellular activity in hematopoietic cell lines harboring the V617F mutation and in murine BaF3 TEL-Jak2 cells. Compound 19a demonstrated significant tumor growth inhibition in a UKE-1 xenograft model within a well-tolerated dose range.


Bioorganic & Medicinal Chemistry Letters | 2010

Replacement of pyrazol-3-yl amine hinge binder with thiazol-2-yl amine: Discovery of potent and selective JAK2 inhibitors.

Stephanos Ioannidis; Michelle Lamb; Lynsie Almeida; Huiping Guan; Bo Peng; Geraldine Bebernitz; Kirsten Bell; Marat Alimzhanov; Michael Zinda

Thiazol-2-yl amine was identified as an isosteric replacement for pyrazol-3-yl amine during our efforts to identify potent and selective JAK2 inhibitors. The rationale, synthesis and biological evaluation of several analogs is reported, along with the in vivo evaluation of the lead compounds.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors.

Stephanos Ioannidis; Michelle Lamb; Audrey Davies; Lynsie Almeida; Mei Su; Geraldine Bebernitz; Minwei Ye; Kirsten Bell; Marat Alimzhanov; Michael Zinda

The design, synthesis and biological evaluation of a series of pyrazol-3-ylamino pyrazines as potent and selective JAK2 kinase inhibitors is reported, along with the pharmacokinetic and pharmacodynamic properties of lead compounds.


ACS Medicinal Chemistry Letters | 2013

Structure and Property Based Design of Pyrazolo[1,5-a]pyrimidine Inhibitors of CK2 Kinase with Activity in Vivo.

James E. Dowling; Marat Alimzhanov; Larry Bao; Michael Howard Block; Claudio Chuaqui; Emma L. Cooke; Christopher R. Denz; Alex Hird; Shan Huang; Nicholas A. Larsen; Bo Peng; Timothy Pontz; Caroline Rivard-Costa; Jamal C. Saeh; Kumar Thakur; Qing Ye; Tao Zhang; Paul Lyne

In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.


Oncotarget | 2016

Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma

Xiaoen Wang; Nicolas Solban; Prateek Khanna; Marcella Callea; Jiaxi Song; David C. Alsop; R. Scott Pearsall; Michael B. Atkins; Sabina Signoretti; Marat Alimzhanov; Ravi Kumar; Manoj Bhasin; Rupal S. Bhatt

Treatment of metastatic renal cell carcinoma (mRCC) with agents that block signaling through vascular endothelial growth factor receptor 2 (VEGFR2) induces disease regression or stabilization in some patients; however, these responses tend to be short-lived. Therefore, development of combination therapies that can extend the efficacy of VEGFR antagonists in mRCC remains a priority. We studied murine xenograft models of RCC that become refractory to treatment with the VEGFR tyrosine kinase inhibitor (TKI) sunitinib. Dalantercept is a novel antagonist of Activin receptor-like kinase 1 (ALK1)/Bone morphogenetic protein (BMP) 9 signaling. Dalantercept inhibited growth in the murine A498 xenograft model which correlated with hyperdilation of the tumor vasculature and an increase in tumor hypoxia. When combined with sunitinib, dalantercept induced tumor necrosis and prevented tumor regrowth and revascularization typically seen with sunitinib monotherapy in two RCC models. Combination therapy led to significant downregulation of angiogenic genes as well as downregulation of endothelial specific gene expression particularly of the Notch signaling pathway. We demonstrate that simultaneous targeting of molecules that control distinct phases of angiogenesis, such as ALK1 and VEGFR, is a valid strategy for treatment of mRCC. At the molecular level, combination therapy leads to downregulation of Notch signaling.


Bioorganic & Medicinal Chemistry Letters | 2011

In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors.

Tao Wang; Stephanos Ioannidis; Lynsie Almeida; Michael Howard Block; Audrey Davies; Michelle Lamb; David Scott; Mei Su; Hai-Jun Zhang; Marat Alimzhanov; Geraldine Bebernitz; Kirsten Bell; Michael Zinda

Synthesis and biological evaluation of a series of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors was reported. Biochemical screening, followed by profile optimization, resulted in JAK2 inhibitors exhibiting good kinase selectivity, pharmacokinetic properties, physical properties and pharmacodynamic effects.


ACS Medicinal Chemistry Letters | 2016

Potent and Selective CK2 Kinase Inhibitors with Effects on Wnt Pathway Signaling in Vivo

James E. Dowling; Marat Alimzhanov; Larry Bao; Claudio Chuaqui; Christopher R. Denz; E Jenkins; Nicholas A. Larsen; Paul Lyne; Timothy Pontz; Qing Ye; G.A Holdgate; L Snow; N O'Connell; Andrew D. Ferguson

The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and β-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts.

Collaboration


Dive into the Marat Alimzhanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge