Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Lamb is active.

Publication


Featured researches published by Michelle Lamb.


Blood | 2014

AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia

Erika K. Keeton; Kristen McEachern; Keith Dillman; Sangeetha Palakurthi; Yichen Cao; Michael Grondine; Surinder Kaur; Suping Wang; Yuching Chen; Allan Wu; Minhui Shen; Francis D. Gibbons; Michelle Lamb; Xiaolan Zheng; Richard Stone; Daniel J. DeAngelo; Leonidas C. Platanias; Les A. Dakin; Huawei Chen; Paul Lyne; Dennis Huszar

Upregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively. AZD1208 inhibited the growth of 5 of 14 acute myeloid leukemia (AML) cell lines tested, and sensitivity correlates with Pim-1 expression and STAT5 activation. AZD1208 causes cell cycle arrest and apoptosis in MOLM-16 cells, accompanied by a dose-dependent reduction in phosphorylation of Bcl-2 antagonist of cell death, 4EBP1, p70S6K, and S6, as well as increases in cleaved caspase 3 and p27. Inhibition of p4EBP1 and p-p70S6K and suppression of translation are the most representative effects of Pim inhibition in sensitive AML cell lines. AZD1208 inhibits the growth of MOLM-16 and KG-1a xenograft tumors in vivo with a clear pharmacodynamic-pharmacokinetic relationship. AZD1208 also potently inhibits colony growth and Pim signaling substrates in primary AML cells from bone marrow that are Flt3 wild-type or Flt3 internal tandem duplication mutant. These results underscore the therapeutic potential of Pim kinase inhibition for the treatment of AML.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases.

Les A. Dakin; Michael Howard Block; Huawei Chen; Erin Code; James E. Dowling; Xiaomei Feng; Andrew D. Ferguson; Isabelle Green; Alexander Hird; Tina Howard; Erika K. Keeton; Michelle Lamb; Paul Lyne; Hannah Pollard; Jon Read; Allan Wu; Tao Zhang; Xiaolan Zheng

Novel substituted benzylidene-1,3-thiazolidine-2,4-diones (TZDs) have been identified as potent and highly selective inhibitors of the PIM kinases. The synthesis and SAR of these compounds are described, along with X-ray crystallographic, anti-proliferative, and selectivity data.


ACS Chemical Biology | 2013

Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1.

Jiaquan Wu; Keith Mikule; Wenxian Wang; Nancy Su; Philip Petteruti; Farzin Gharahdaghi; Erin Code; Xiahui Zhu; Kelly Jacques; Zhongwu Lai; Bin Yang; Michelle Lamb; Claudio Chuaqui; Nicholas Keen; Huawei Chen

Centrosome amplification is observed in many human cancers and has been proposed to be a driver of both genetic instability and tumorigenesis. Cancer cells have evolved mechanisms to bundle multiple centrosomes into two spindle poles to avoid multipolar mitosis that can lead to chromosomal segregation defects and eventually cell death. KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. To this end, we have identified the first reported small molecule inhibitor AZ82 for KIFC1. AZ82 bound specifically to the KIFC1/microtubule (MT) binary complex and inhibited the MT-stimulated KIFC1 enzymatic activity in an ATP-competitive and MT-noncompetitive manner with a Ki of 0.043 μM. AZ82 effectively engaged with the minus end-directed KIFC1 motor inside cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5. Treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Consistent with genetic studies, our data confirmed that KIFC1 inhibition by a small molecule holds promise for targeting cancer cells with amplified centrosomes and provided evidence that functional suppression of KIFC1 by inhibiting its enzymatic activity could be an effective means for developing cancer therapeutics.


Bioorganic & Medicinal Chemistry Letters | 2010

Replacement of pyrazol-3-yl amine hinge binder with thiazol-2-yl amine: Discovery of potent and selective JAK2 inhibitors.

Stephanos Ioannidis; Michelle Lamb; Lynsie Almeida; Huiping Guan; Bo Peng; Geraldine Bebernitz; Kirsten Bell; Marat Alimzhanov; Michael Zinda

Thiazol-2-yl amine was identified as an isosteric replacement for pyrazol-3-yl amine during our efforts to identify potent and selective JAK2 inhibitors. The rationale, synthesis and biological evaluation of several analogs is reported, along with the in vivo evaluation of the lead compounds.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors.

Stephanos Ioannidis; Michelle Lamb; Audrey Davies; Lynsie Almeida; Mei Su; Geraldine Bebernitz; Minwei Ye; Kirsten Bell; Marat Alimzhanov; Michael Zinda

The design, synthesis and biological evaluation of a series of pyrazol-3-ylamino pyrazines as potent and selective JAK2 kinase inhibitors is reported, along with the pharmacokinetic and pharmacodynamic properties of lead compounds.


Journal of Medicinal Chemistry | 2014

Discovery of Potent KIFC1 Inhibitors Using a Method of Integrated High-Throughput Synthesis and Screening

Bin Yang; Michelle Lamb; Tao Zhang; Edward J. Hennessy; Gurmit Grewal; Li Sha; Mark Zambrowski; Michael Howard Block; James E. Dowling; Nancy Su; Jiaquan Wu; Tracy L. Deegan; Keith Mikule; Wenxian Wang; Rüdiger Kaspera; Claudio Chuaqui; Huawei Chen

KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering

Jeffrey W. Johannes; Lynsie Almeida; Kevin Daly; Andrew D. Ferguson; Shaun Grosskurth; Huiping Guan; Tina Howard; Stephanos Ioannidis; Steven Kazmirski; Michelle Lamb; Nicholas A. Larsen; Paul Lyne; Keith Mikule; Claude Ogoe; Bo Peng; Philip Petteruti; Jon Read; Nancy Su; Mark Sylvester; Scott Throner; Wenxian Wang; Xin Wang; Jiaquan Wu; Qing Ye; Yan Yu; Xiaolan Zheng; David Scott

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZenecas collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Bioorganic & Medicinal Chemistry Letters | 2011

In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors.

Tao Wang; Stephanos Ioannidis; Lynsie Almeida; Michael Howard Block; Audrey Davies; Michelle Lamb; David Scott; Mei Su; Hai-Jun Zhang; Marat Alimzhanov; Geraldine Bebernitz; Kirsten Bell; Michael Zinda

Synthesis and biological evaluation of a series of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors was reported. Biochemical screening, followed by profile optimization, resulted in JAK2 inhibitors exhibiting good kinase selectivity, pharmacokinetic properties, physical properties and pharmacodynamic effects.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of Novel Jak2-Stat Pathway Inhibitors with Extended Residence Time on Target.

Huiping Guan; Michelle Lamb; Bo Peng; Shan Huang; Nancy DeGrace; Jon Read; Syeed Hussain; Jiaquan Wu; Caroline Rivard; Marat Alimzhanov; Geraldine Bebernitz; Kirsten Bell; Minwei Ye; Michael Zinda; Stephanos Ioannidis

The discovery of the activating mutation V617F in the JH2 domain of Jak2 and the modulation of oncogenic Stat3 by Jak2 inhibitors have spurred a great interest in the inhibition of the Jak2/Stat pathway in oncology. In this Letter, we communicate the discovery of novel inhibitors of the Jak2/Stat5 axis, the N-(1H-pyrazol-3-yl)pyrimidin-2-amino derivatives. The rationale, synthesis and biological evaluation of these derivatives are reported. Two lead analogs from this series, 6 and 9, displayed prolonged residence time on Jak2, at enzymatic level. Although 6 and 9 exhibited moderate selectivity in a selected kinase panel, we chose to test these inhibitors in vivo as a consequence to their long residence time. However, extended inhibition of Jak2 due to the long residence time, in the form of inhibiting phosphorylation of downstream Stat5, was not recapitulated in an in vivo setting.


Toxicological Sciences | 2017

Deconvoluting Kinase Inhibitor Induced Cardiotoxicity

Sarah D. Lamore; Ernst Ahlberg; Scott Boyer; Michelle Lamb; Maria P. Hortigon-Vinagre; Victor Zamora Rodriguez; Godfrey L. Smith; Johanna Sagemark; Lars Carlsson; Stephanie Bates; Allison Laura Choy; Jonna Stålring; Clay W Scott; Matthew F. Peters

Abstract Many drugs designed to inhibit kinases have their clinical utility limited by cardiotoxicity-related label warnings or prescribing restrictions. While this liability is widely recognized, designing safer kinase inhibitors (KI) requires knowledge of the causative kinase(s). Efforts to unravel the kinases have encountered pharmacology with nearly prohibitive complexity. At therapeutically relevant concentrations, KIs show promiscuity distributed across the kinome. Here, to overcome this complexity, 65 KIs with known kinome-scale polypharmacology profiles were assessed for effects on cardiomyocyte (CM) beating. Changes in human iPSC-CM beat rate and amplitude were measured using label-free cellular impedance. Correlations between beat effects and kinase inhibition profiles were mined by computation analysis (Matthews Correlation Coefficient) to identify associated kinases. Thirty kinases met criteria of having (1) pharmacological inhibition correlated with CM beat changes, (2) expression in both human-induced pluripotent stem cell-derived cardiomyocytes and adult heart tissue, and (3) effects on CM beating following single gene knockdown. A subset of these 30 kinases were selected for mechanistic follow up. Examples of kinases regulating processes spanning the excitation–contraction cascade were identified, including calcium flux (RPS6KA3, IKBKE) and action potential duration (MAP4K2). Finally, a simple model was created to predict functional cardiotoxicity whereby inactivity at three sentinel kinases (RPS6KB1, FAK, STK35) showed exceptional accuracy in vitro and translated to clinical KI safety data. For drug discovery, identifying causative kinases and introducing a predictive model should transform the ability to design safer KI medicines. For cardiovascular biology, discovering kinases previously unrecognized as influencing cardiovascular biology should stimulate investigation of underappreciated signaling pathways.

Collaboration


Dive into the Michelle Lamb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge