Marc-André Lachance
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc-André Lachance.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Frank Wiens; Annette Zitzmann; Marc-André Lachance; Michel Yegles; Fritz Pragst; Friedrich Martin Wurst; Dietrich von Holst; Saw Leng Guan; Rainer Spanagel
For humans alcohol consumption often has devastating consequences. Wild mammals may also be behaviorally and physiologically challenged by alcohol in their food. Here, we provide a detailed account of chronic alcohol intake by mammals as part of a coevolved relationship with a plant. We discovered that seven mammalian species in a West Malaysian rainforest consume alcoholic nectar daily from flower buds of the bertam palm (Eugeissona tristis), which they pollinate. The 3.8% maximum alcohol concentration (mean: 0.6%; median: 0.5%) that we recorded is among the highest ever reported in a natural food. Nectar high in alcohol is facilitated by specialized flower buds that harbor a fermenting yeast community, including several species new to science. Pentailed treeshrews (Ptilocercus lowii) frequently consume alcohol doses from the inflorescences that would intoxicate humans. Yet, the flower-visiting mammals showed no signs of intoxication. Analysis of an alcohol metabolite (ethyl glucuronide) in their hair yielded concentrations higher than those in humans with similarly high alcohol intake. The pentailed treeshrew is considered a living model for extinct mammals representing the stock from which all extinct and living treeshrews and primates radiated. Therefore, we hypothesize that moderate to high alcohol intake was present early on in the evolution of these closely related lineages. It is yet unclear to what extent treeshrews benefit from ingested alcohol per se and how they mitigate the risk of continuous high blood alcohol concentrations.
The Yeasts (Fifth Edition) | 2010
Marc-André Lachance; Teun Boekhout; Gloria Scorzetti; Jack W. Fell; Cletus P. Kurtzman
Publisher Summary This chapter studies the genus Candida. In the asexual reproduction it is seen that cells are globose, ellipsoidal, cylindroidal, or elongate and occasionally ogival, triangular, or lunate. Reproduction is by holoblastic budding. Pseudohyphae and septate hyphae may be formed. The cell wall is ascomycetous and two-layered. Ballistoconidia are not formed. Arthroconidia may be formed, but not extensively. Sexual reproduction is absent. The chapter also discusses physiology/biochemistry and phylogenetic placement of the genus in which glucose may be fermented, nitrate may be assimilated, and starch-like compounds are not produced. The diazonium blue B reaction is negative and xylose, rhamnose, and fucose are not present in cell hydrolysates. The type species taken is Candida vulgaris. The chapter also explores the systematic discussion of the species that involves growth on YM agar, growth in glucose-yeast extract broth, and Dalmau plate culture on corn meal agar.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1995
Marc-André Lachance
Fresh and cooked agave,Drosophila spp., processing equipment, agave molasses, agave extract, and fermenting must at a traditional tequila distillery (Herradura, Amatitan, Jalisco, México) were studied to gain insight on the origin of yeasts involved in a natural tequila fermentations. Five yeast communities were identified. (1) Fresh agave contained a diverse mycobiota dominated byClavispora lusitaniae and an endemic species,Metschnikowia agaveae. (2)Drosophila spp. from around or inside the distillery yielded typical fruit yeasts, in particularHanseniaspora spp.,Pichia kluyveri, andCandida krusei. (3)Schizosaccharomyces pombe prevailed in molasses. (4) Cooked agave and extract had a considerable diversity of species, but includedSaccharomyces cerevisiae. (5) Fermenting juice underwent a gradual reduction in yeast heterogeneity.Torulaspora delbrueckii, Kluyveromyces marxianus, andHanseniaspora spp. progressively ceded the way toS. cerevisiae, Zygosaccharomyces bailii, Candida milleri, andBrettanomyces spp. With the exception ofPichia membranaefaciens, which was shared by all communities, little overlap existed. That separation was even more manifest when species were divided into distinguishable biotypes based on morphology or physiology. It is concluded that crushing equipment and must holding tanks are the main source of significant inoculum for the fermentation process.Drosophila species appear to serve as internal vectors. Proximity to fruit trees probably contributes to maintaining a substantialDrosophila community, but the yeasts found in the distillery exhibit very little similarity to those found in adjacent vegetation. Interactions involving killer toxins had no apparent direct effects on the yeast community structure.
Fems Yeast Research | 2003
Carlos A. Rosa; Marc-André Lachance; Janaína de Oliveira Costa Silva; Ana Teixeira; Marjorie Mendes Marini; Yasmine Antonini; Rogério Parentoni Martins
The yeast communities associated with the stingless bees Tetragonisca angustula, Melipona quadrifasciata and Frieseomelitta varia were studied. The bees T. angustula and F. varia showed a strong association with the yeast Starmerella meliponinorum. M. quadrifasciata more frequently carried a species related to Candida apicola, but also vectored low numbers of S. meliponinorum. Some of the yeasts isolated from adult bees were typical of species known to occur in flowers. Other yeast species found in adult bees were more typical of those found in the phylloplane. S. meliponinorum and the species in the C. apicola complex, also part of the Starmerella clade, may have a mutualistic relationship with the bees studied. Many yeasts in that group are often found in bees or substrates visited by bees, suggesting that a mutually beneficial interaction exists between them.
Fems Yeast Research | 2009
Raquel M. Cadete; Renata O. Santos; Monaliza A. Melo; Adriane Mouro; Davi Gonçalves; Boris U. Stambuk; Fátima de Cássia Oliveira Gomes; Marc-André Lachance; Carlos A. Rosa
Four strains of a new yeast species were isolated from rotting wood from two sites in an Atlantic Rain Forest and a Cerrado ecosystem in Brazil. The analysis of the sequences of the D1/D2 domains of the large-subunit rRNA gene showed that this species belongs to the Spathaspora clade. The new species ferments D-xylose efficiently and is related to Candida jeffriesii and Spathaspora passalidarum, both of which also ferment D-xylose. Similar to S. passalidarum, the new species produces unconjugated asci with a single greatly elongated ascospore with curved ends. The type strain of Spathaspora arborariae sp. nov. is UFMG-HM19.1A(T) (=CBS11463(T)=NRRL Y-48658(T)).
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2014
Heide-Marie Daniel; Marc-André Lachance; Cletus P. Kurtzman
Multigene phylogenies have been instrumental in revising the classification of ascosporic (teleomorph) yeasts in a natural system based on lines of descent. Although many taxonomic changes have already been implemented for teleomorph taxa, this is not yet the case for the large genus Candida and smaller anascosporic (anamorph) genera. In view of the recently introduced requirement that a fungal species or higher taxon be assigned only a single valid name under the new International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), the current species of Candida and other anamorph yeast genera must undergo revision to make genus membership consistent with phylogenetic affinities. A review of existing data and analyses shows that certain Candida species may be assigned to teleomorph genera with high confidence using multigene phylogenies. Candida species that form well-circumscribed phylogenetic clades without any teleomorph member justify the creation of new genera. However, a considerable number of Candida species sit at the end of isolated and often long branches, and hence cannot be assigned to larger species groups. They should be maintained in Candida sensu lato until studied by multigene analyses in datasets with comprehensive taxon sampling. The principle of name stability has to be honoured to the largest extent compatible with a natural classification of Candida species.
Journal of Phycology | 2004
Tessa Pocock; Marc-André Lachance; Thomas Pröschold; John C. Priscu; Sam S. Kim; Norman P. A. Huner
An unusual psychrophilic green alga was isolated from the deepest portion of the photic zone (<0.1% of incident PAR) at a depth of 17 m in the permanently ice‐covered lake, Lake Bonney, Antarctica. Here we identify and report the first detailed morphological and molecular examination of this Antarctic green alga, which we refer to as strain UWO 241. To determine the taxonomic identity, UWO 241 was examined using LM and TEM and partial sequences of the small subunit (SSU), internal transcribed spacer (ITS) 1 and ITS2 regions (including the 5.8S) of the ribosomal operon. These data were compared with those of previously described taxa. We identified UWO 241 as a strain of Chlamydomonas raudensis Ettl (SAG 49.72). Chlamydomonas raudensis is closely related to C. noctigama Korshikov (UTEX 2289) as well as foraminifer symbionts such as C. hedleyi Lee, Crockett, Hagen et Stone (ATCC 50216). In addition, its morphology, pigment complement, and phototactic response to temperature are reported. Chlamydomonas raudensis (UWO 241) contains relatively high levels of lutein and low chl a/b ratios (1.6±0.15), and the phototactic response was temperature dependent. The Antarctic isolate (UWO 241) included the typical photosynthetic pigments found in all chl a/b containing green algae. It possesses a small eyespot and, interestingly, was positively phototactic only at higher nonpermissive growth temperatures. Comparison of SSU and ITS rDNA sequences confirms the identification of the strain UWO 241 as C. raudensis Ettl and contradicts the previous designation as C. subcaudata Wille.
Canadian Journal of Microbiology | 2001
Marc-André Lachance; Jane M. Bowles; Sabrina Kwon; Gaelle Marinoni; William T. Starmer; Daniel H. Janzen
Two new haplontic heterothallic species of Metschnikowia were isolated from floricolous insects and flowers. Metschnikowia lochheadii was recovered from insects found in various flowers on the Hawaiian Islands of Kauai and Maui, and from Conotelus sp. (Coleoptera: Nitidulidae) in northwestern Guanacaste Province, Costa Rica. The morphology, physiology, and sexual cycle are typical of the large-spored Metschnikowia species, and the partial ribosomal DNA large subunit (D1D2) sequences suggest that the new species is most closely related to Candida ipomoeae. Metschnikowia lochheadii is nearly indistinguishable from its ascogenous relatives and conjugates freely with Metschnikowia continentalis, forming sterile asci. It also exhibits asymmetric mating with Metschnikowia hawaiiensis. Metschnikowia drosophilae was found in morning glory (Ipomoea sp.) flowers and associated Drosophila bromeliae on Grand Cayman Island. Its nutritional profile is atypical of the genus, being the only species that does not utilize sucrose or maltose as carbon sources, and one of the few that does not utilize melezitose. D1D2 sequences show that Metschnikowia drosophilae is a sister species to Candida torresii, to which it bears considerable similarity in nutritional profile. The type cultures are: Metschnikowia lochheadii, strains UWO(PS)00-133.2 = CBS 8807 (h+, holotype) UWO(PS)99-661.1 = CBS 8808 (h-, isotype); and Metschnikowia drosophilae, strains UWO(PS)83-1135.3 = CBS 8809 (h+, holotype) and UWO(PS)83-1143.1 = CBS 8810 (h-, isotype).
PLOS ONE | 2012
Raquel M. Cadete; Monaliza A. Melo; Kelly J. Dussán; Rita C.L.B. Rodrigues; Silvio Silvério da Silva; Jerri Édson Zilli; Marcos José Salgado Vital; Fátima de Cássia Oliveira Gomes; Marc-André Lachance; Carlos A. DaRocha Rosa
Background This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. Methodology/Principal Findings A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L·h to 0.75 g/L·h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L·h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. Conclusions/Significance This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.
FEMS Microbiology Ecology | 2012
María I. Pozo; Marc-André Lachance; Carlos M. Herrera
Recent studies have shown that dense yeast populations often occurring in floral nectar are numerically dominated by a few species from the flower-insect interface specialized genus Metschnikowia, while generalist yeast species commonly occurring on leaf surfaces, soil, freshwater, and air were rarely isolated from nectar samples. This study was designed to understand the main factors responsible for the assembly of nectar yeast communities, by combining field experiments with laboratory tests characterizing the physiological abilities of all yeast species forming the pool of potential colonizers for two Spanish flowering plants (Digitalis obscura and Atropa baetica). Yeast frequency and species richness were assessed in external sources (bee glossae, air, plant phylloplane) as well as in pollinator rewards (pollen, nectar). Yeasts were most frequent in external sources (air, flower-visiting insects), less so in the proximate floral environment (phylloplane), and least in pollen and nectar. Nectar communities appeared to be considerably impoverished versions of those in insect glossae and phylloplane. Nectar, pollen, and insect yeast assemblages differed in physiological characteristics from those in other substrates. Nectarivorous Metschnikowia were not more resistant than other yeast species to plant secondary compounds and high sugar concentrations typical of nectar, but their higher growth rates may be decisive for their dominance in ephemeral nectar communities.
Collaboration
Dive into the Marc-André Lachance's collaboration.
Fátima de Cássia Oliveira Gomes
Centro Federal de Educação Tecnológica de Minas Gerais
View shared research outputs