Marc Beauregard
Université du Québec à Trois-Rivières
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Beauregard.
Journal of Physical Chemistry B | 2009
David M. Charbonneau; Marc Beauregard; Heidar-Ali Tajmir-Riahi
Human serum albumin (HSA) is a major transporter for delivering several endogenous compounds including fatty acids in vivo. Even though HSA is the primary target of fatty acid binding, the effects of cationic lipid on protein stability and conformation have not been investigated. The aim of this study was to examine the interaction of human serum albumin (HSA) with helper lipids--cholesterol (Chol) and dioleoylphosphatidylethanolamine (DOPE)--and with cationic lipids--dioctadecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), at physiological conditions, using constant protein concentration and various lipid contents. Fourier transform infrared (FTIR), circular dichroism (CD), and fluorescence spectroscopic methods were used to analyze the lipid binding mode, the binding constant, and the effects of lipid interaction on HSA stability and conformation. Structural analysis showed that cholesterol and DOPE (helper lipids) interact mainly with HSA polypeptide polar groups and via hydrophobic moieties. Hydrophobic interactions dominate the binding of cationic lipids to HSA. The number of bound lipids (n) calculated was 1.22 (cholesterol), 1.82 (DDAB), 1.76 (DOPE), and 1.56 (DOTAP). The overall binding constants estimated were KChol=2.3 (+/-0.50)x10(3) M(-1), KDDAB=8.9 (+/-0.95)x10(3) M(-1), KDOTAP=9.1 (+/-0.90)x10(3) M(-1), and KDOPE=4.7 (+/-0.70)x10(3) M(-1). HSA conformation was stabilized by cholesterol and DOPE with a slight increase of protein alpha-helical structures, while DOTAP and DDAB induced an important (alpha-->beta) transition, suggesting a partial protein unfolding.
Biotechnology for Biofuels | 2013
Tyler P. Korman; Bobby Sahachartsiri; David M. Charbonneau; Grace L Huang; Marc Beauregard; James U. Bowie
BackgroundBiodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially.ResultsWe employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis.ConclusionsDirected evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms the industrially used lipase from Burkholderia cepacia and provides a platform for still further evolution of desirable biodiesel production properties.
Journal of Biomolecular Structure & Dynamics | 2006
C. N. N′ soukpoé-Kossi; C. St-Louis; Marc Beauregard; M. Subirade; Robert Carpentier; S. Hotchandani; Heidar-Ali Tajmir-Riahi
Abstract Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419–426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclo- oxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents μM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure. Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of KRes = 2.56× 105 M−1. The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of α-helix from 57% (free HSA) to 62% and a decrease of β-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.
PLOS ONE | 2013
David M. Charbonneau; Marc Beauregard
Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzymes. Here we propose a 15th family (family XV) and suggest criteria for the assignation of protein sequences to the N’ subfamily. Five selected salt bridges, hallmarks of the N’ subfamily (E3/R54, E12/R37, E66/R140, D124/K178 and D205/R220) were disrupted in EstGtA2 using a combinatorial alanine-scanning approach. A set of 14 (R/K→A) mutants was produced, including five single, three double, three triple and three quadruple mutants. Despite a high tolerance to non-conservative mutations for folding, all the alanine substitutions were destabilizing (decreasing T m by 5 to 14°C). A particular combination of four substitutions exceeded this tolerance and prevents the correct folding of EstGtA2, leading to enzyme inactivation. Although other mutants remain active at low temperatures, the accumulation of more than two mutations had a dramatic impact on EstGtA2 activity at high temperatures suggesting an important role of these conserved salt bridge-forming residues in thermostability of lipolytic enzymes from the N’ subfamily. We also identified a particular interloop salt bridge in EstGtA2 (D194/H222), located at position i -2 and i -4 residues from the catalytic Asp and His respectively which is conserved in other related bacterial lipolytic enzymes (families IV and XIII) with high tolerance to mutations and charge reversal. We investigated the role of residue identity at position 222 in controlling stability-pH dependence in EstGtA2. The introduction of a His to Arg mutation led to increase thermostability under alkaline pH. Our results suggest primary targets for optimization of EstGtA2 for specific biotechnological purposes.
Journal of Biochemistry | 2010
David M. Charbonneau; Fatma Meddeb-Mouelhi; Marc Beauregard
A novel gene encoding an esterase from Geobacillus thermodenitrificans strain CMB-A2 was cloned, sequenced and functionally expressed in Escherichia coli M15. Sequence analysis revealed an open reading frame of 747 bp corresponding to a polypeptide of 249 amino acid residues (named EstGtA2). After purification, a specific activity of 2.58 U mg(-1) was detected using p-NP caprylate (C8) at 50 degrees C and pH 8.0 (optimal conditions). The enzyme catalyses the hydrolysis of triglycerides (tributyrin) and a variety of p-nitrophenyl esters with different fatty acyl chain length (C4-C16). The enzyme has potential for various industrial applications since it is characterized by its activity under a wide range of pH, from 25 to 65 degrees C. Using Geobacillus stearothermophilus Est30 esterase structure as template, a model of EstGtA2 was built using ESyPred3D. Analysis of this structural model allowed identifying putative sequence features that control EstGtA2 enzymatic properties. Based on sequence properties, multiple sequence comparisons and phylogenetic analyses, this enzyme appears to belong to a new family of carboxylesterases.
Enzyme and Microbial Technology | 2014
Fatma Meddeb-Mouelhi; Jessica Kelly Moisan; Marc Beauregard
Identification of microorganisms for the production of carbohydrolytic enzymes is extremely important given the increased demand for these enzymes in many industries. To this end, dye-polysaccharide interactions which provide a visual indication of polymer hydrolysis (clear zones or halos) have been used for decades. For the detection of extracellular cellulase or xylanase activity many laboratories use Grams iodine as the chromogenic dye, as it is a more rapid initial screening method compared to the use of other dyes. Here, we compared Grams iodine and Congo red as indicators of polysaccharide hydrolysis. We attempted to detect cellulase activity using carboxymethylcellulose, and xylanase activity using birchwood xylan, in fourteen uncharacterized bacteria isolated from wood chips. Our results indicate that Grams iodine may lead to identification of false positives in a typical screening protocol and that Congo red allows for avoidance of such pitfall. Congo red allowed detection of cellulase activity from live microbial colonies but not Grams iodine. To confirm this, detection of enzymatic activity was also assessed using cell-free enzyme preparations. Congo red was found to be reliable in detecting cellulase activity with isolated enzymes preparations. Under the same conditions, neither of these dyes detected xylanase activity, despite independent evidence of xylanase activity for one of the preparations. We detected xylanase activity for this particular enzyme preparation using a coloured derivative of xylan (Remazol Brillant Blue R-xylan adduct) that respond to xylan hydrolysis. Our results suggest that methods that rely on interactions between a dye (Congo red or Grams iodine) and a polymeric substrate (carboxymethylcellulose or birchwood xylan) for indirect detection of hydrolysis may require the use of relevant controls and independent confirmation of enzymatic activities.
FEBS Journal | 2005
Subramanyam Rajagopal; David Joly; Alain Gauthier; Marc Beauregard; Robert Carpentier
The protective role of reactive oxygen scavengers against photodamage was studied in isolated photosystem (PS) I submembrane fractions illuminated (2000 µE·m−2·s−1) for various periods at 4 °C. The photochemical activity of the submembrane fractions measured as P700 photooxidation was significantly protected in the presence of histidine or n‐propyl gallate. Chlorophyll photobleaching resulting in a decrease of absorbance and fluorescence, and a blue‐shift of both absorbance and fluorescence maximum in the red region, was also greatly delayed in the presence of these scavengers. Western blot analysis revealed the light harvesting antenna complexes of PSI, Lhca2 and Lhca1, were more susceptible to strong light when compared to Lhca3 and Lhca4. The reaction‐center proteins PsaB, PsaC, and PsaE were most sensitive to strong illumination while other polypeptides were less affected. Addition of histidine or n‐propyl gallate lead to significant protection of reaction‐center proteins as well as Lhca against strong illumination. Circular dichroism (CD) spectra revealed that the α‐helix content decreased with increasing period of light exposure, whereas β‐strands, turns, and unordered structure increased. This unfolding was prevented with the addition of histidine or n‐propyl gallate even after 10 h of strong illumination. Catalase or superoxide dismutase could not minimize the alteration of PSI photochemical activity and structure due to photodamage. The specific action of histidine and n‐propyl gallate indicates that 1O2 was the main form of reactive oxygen species responsible for strong light‐induced damage in PSI submembrane fractions.
Indian Journal of Microbiology | 2012
David M. Charbonneau; Fatma Meddeb-Mouelhi; Maurice Boissinot; Marc Sirois; Marc Beauregard
Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60–65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.
Journal of Photochemistry and Photobiology B-biology | 2012
Daniel Agudelo; Marc Beauregard; Gervais Bérubé; Heidar-Ali Tajmir-Riahi
β-Lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as doxorubicin and its derivatives. We located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with β-lactoglobulin in aqueous solution at physiological conditions, using FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling. Structural analysis showed that DOX and FDOX bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-)(β)(-LG)=1.0 (± 0.4)× 10(4)M(-1) and K(FDOX-)(β)(-LG)=2.5 (± 0.5)× 10(4)M(-1) and the number of drug molecules bound per protein (n) 1.2 for DOX and 0.6 for FDOX. Molecular modeling showed the participation of several amino acids in the drug-protein complexes with the free binding energy of -8.12 kcal/mol for DOX-β-LG and -7.74 kcal/mol for FDOX-β-LG complexes. DOX and FDOX do not share similar binding sites with β-LG. Protein conformation showed minor alterations with reduction of β-sheet from 58% (free protein) to 57-51% in the drug-β-LG complexes. β-LG can transport doxorubicin and its derivative in vitro.
FEBS Letters | 2000
M.C Gagnon; M Williams; A Doucet; Marc Beauregard
Protein design is currently used for the creation of new proteins with desirable traits. In our lab, we focus on the synthesis of proteins with high essential amino acid content, having potential application in animal nutrition. One of the limitations we face in this endeavor is the achievement of stable proteins in spite of a highly biased amino acid content. We report here the synthesis and characterization of MB‐1Trp, a protein with a tailored content in selected essential amino acids. The protein is a Tyr62‐Trp mutant of the parent molecule MB‐1 described earlier. The new protein is largely helical as per design, is well folded, and has a melting temperature of 55°C. Its resistance to proteolytic degradation compares to that of cytochrome c, a protein of similar size. Design strategy used for MB‐1Trp is discussed with regards to its applicability toward the creation of efficient nutritional proteins.