Marc Borrega
Aalto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Borrega.
Cellulose | 2013
Herbert Sixta; Mikhail Iakovlev; Lidia Testova; Annariikka Roselli; Michael Hummel; Marc Borrega; Adriaan van Heiningen; Carmen Froschauer; Herwig Schottenberger
Herein, we report about existing and novel dissolving pulp processes providing the basis for an advanced biorefinery. The SO2–ethanol–water (SEW) process has the potential to replace the acid sulphite process for the production of rayon-grade pulps owing to a higher flexibility in the selection of the raw material source, substantially lower cooking times, and the near absence of sugar degradation products. Special attention is paid to developments that target toward the selective and quantitative fractionation of paper-grade pulps into hemicelluloses and cellulose of highest purity. This target has been accomplished by the IONCELL process where the entire hemicellulose fraction is selectively dissolved in an ionic liquid in which the H-bond basicity and acidity are adequately adjusted by the addition of a co-solvent. At the same time, pure hemicellulose can be recovered by further addition of the co-solvent, which then acts as a non-solvent. The residual pure cellulose fraction may then enter a Lyocell process for the production of regenerated cellulose products.
Bioresource Technology | 2011
Marc Borrega; Kaarlo Nieminen; Herbert Sixta
Hot water extraction of wood at elevated temperatures may be a suitable method to produce hemicellulose-lean pulps and to recover xylan-derived products from the water extract. In this study, water extractions of birch wood were conducted at temperatures between 180 and 240 °C in a batch reactor. Xylan was extensively removed, whereas cellulose was partly degraded only at temperatures above 180 °C. Under severe extraction conditions, acetic acid content in the water extract was higher than the corresponding amount of acetyl groups in wood. In addition to oligo- and monosaccharides, considerable amounts of furfural and 5-hydroxymethylfurfural (HMF) were recovered from the extracts. After reaching a maximum, the furfural yield remained constant with increasing extraction time. This maximum slightly decreased with increasing extraction temperature, suggesting the preferential formation of secondary degradation products from xylose. Kinetic models fitting experimental data are proposed to explain degradation and conversion reactions of xylan and glucan.
Bioresource Technology | 2013
Marc Borrega; Lasse Tolonen; Fanny Bardot; Lidia Testova; Herbert Sixta
The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded.
Green Chemistry | 2016
Huy Quang Lê; Yibo Ma; Marc Borrega; Herbert Sixta
A novel biorefinery concept based on the fractionation of woody biomass in a γ-valerolactone (GVL)/water binary mixture is introduced. Under optimal GVL/water ratio, Eucalyptus globulus wood was effectively fractionated in a single step into its principal components. The pulp fraction, characterized by high yield, high cellulose purity and high bleachability, was directly spun to produce regenerated cellulosic fibers with mechanical properties comparable to the best man-made fibers currently available in the market. Most of the hemicelluloses and lignin in wood were extracted and dissolved into the spent liquor. The dissolved hemicellulose-based fraction may be upgraded to furanic platform chemicals in subsequent catalytic conversion processes. About 50–60% of the extracted lignin was precipitated by the addition of water, an anti-solvent. The precipitated lignin was characterized by low carbohydrate and ash contamination, high phenolic content, relatively low polydispersity and low molecular mass. The lignin extracted by GVL/water fractionation may thus be suitable for a wide range of energy, material or chemical applications.
Holzforschung | 2013
Marc Borrega; Klaus Niemelä; Herbert Sixta
Abstract Hydrothermal treatments (HT) of birchwood were conducted at various intensities to extract the hemicelluloses before pulping. The amount of hemicellulose-derived sugars in the hydrolysates, including xylulose, an isomerization product of xylose, reached first a maximum and then decreased with further increasing treatment intensity. The hydrolysates also contained furanic compounds, carboxylic acids, and a large variety of aromatics, the amounts of which were dependent on HT intensity. At high treatment intensities, furfural and acetic acid were the main products quantified. Numerous nonvolatile, low molar mass carboxylic acids were also formed, with 3-deoxypentonic acid being the most abundant. Additionally, almost 40 aromatic monomers and up to 30 dimers were detected. Syringaldehyde was the main monomer and syringaresinol was the main dimer. Some aromatic compounds could not be identified. The complexity of the hydrolysates, particularly after high-intensity HT, requires selective filtration and purification methods before the hydrolysates can be utilized in downstream processes.
Carbohydrate Polymers | 2017
Jean Buffiere; Zoltán Balogh-Michels; Marc Borrega; Thomas Geiger; Tanja Zimmermann; Herbert Sixta
This paper takes a comparative approach in characterizing two types of nano-scale cellulosic particles obtained using chemical-free pathways, either by nearcritical water treatment or by high-shear homogenization from the same microcrystalline cellulose (MCC). The nearcritical water treatment efficiently depolymerized cellulose, producing a solid precipitated fraction of low-molecular-weight material containing cellulose II, while homogenization mechanically deconstructed MCC without altering its molecular structure. Both pathways yielded nanocellulose-like materials yet with different morphologies. The mechanically produced, rod-like particles were obtained with high yield. In contrast, the hydrothermal precipitate exhibited more hydrophobic ribbon-like particles that provided a greater level of particle-particle interaction. Both materials successfully acted as stabilizers for oil-in-water Pickering emulsions; however, the hydrothermally-produced material exhibited superior performance, with stable emulsions obtained upon addition of as low as 1.0wt.% cellulose. These two pathways are highly relevant for altering the structure and properties of MCC and for formulating new, sustainably produced nanocellulose-based materials.
Green Chemistry | 2016
Jean Buffiere; Patrik Ahvenainen; Marc Borrega; Kirsi Svedström; Herbert Sixta
This work discusses the suitability of supercritical water treatment (SCWT) for depolymerising microcrystalline cellulose in a controlled way. The SCWT partially hydrolysed cellulose down to a mixture of three valuable products: water-insoluble low-molecular-weight cellulose (WI-LMWC) precipitate, water-soluble low-molecular-weight cellulose (WS-LMWC) oligomers, and glucose. The conditions under which the energy demand for obtaining these products is minimised were identified by adjusting the reaction time inside the continuous reactor and the temperature around the critical point. The optimum conditions were 370 °C and 0.4 seconds for producing WI-LMWC and 360 °C and 0.5 seconds for producing WS-LMWC, with maximum yields of 19 wt% and 50 wt%, respectively. This work also shows that the water-insoluble product precipitates into crystalline cellulose II arrangements. This precipitation phenomenon enabled isolation of cellulose chains of different lengths according to their respective solubilities in ambient water. The results show that SCWT is a relevant process for producing narrowly distributed fractions of low-molecular-weight cellulose using water and heat only.
Carbohydrate Polymers | 2018
Marc Borrega; Per Tomas Larsson; Patrik Ahvenainen; Sara Ceccherini; Thaddeus Maloney; Lauri Rautkari; Herbert Sixta
Hydrothermal treatments of birch wood and kraft pulp were compared for their ability to extract the xylan and produce viscose-grade pulp. Water post-hydrolysis of kraft pulp produced a high-purity cellulosic pulp with lower viscosity but higher cellulose yield than traditional pre-hydrolysis kraft pulping of wood. Post-hydrolysis of pulp also increased the crystallite dimensions and degree of crystallinity in cellulose, and promoted a higher extent of fibril aggregation. The lower specific surface area in post-hydrolyzed pulps, derived from their larger fibril aggregates, decreased the accessibility of OH groups. However, this lower accessibility did not seem to decrease the pulp reactivity to derivatizing chemicals. In the aqueous side-stream, the xylose yield was similar in both pre- and post-hydrolysates, although conducting post-hydrolysis of pulp in a flow-through system enabled the recovery of high purity and molar mass (∼10 kDa) xylan for high-value applications.
Industrial & Engineering Chemistry Research | 2018
Huy Quang Lê; Juha-Pekka Pokki; Marc Borrega; Petri Uusi-Kyyny; Ville Alopaeus; Herbert Sixta
We introduce the optimization of the pulping conditions and propose different chemical recovery options for a proven biorefinery concept based on γ-valerolactone (GVL)/water fractionation. The pulping process has been optimized whereby the liquor-to-wood (L:W) ratio could be reduced to 3 L/kg without compromising the pulp properties as raw material for textile fibers production. The recovery of the pulping solvent was performed through combinations of lignin precipitation by water addition, distillation at reduced pressure, and liquid CO2 extraction. With a two-step lignin precipitation coupled with vacuum distillation, more than 90% of lignin and GVL could be recovered from the spent liquor. However, a significant part of GVL remained unrecoverable in the residue, which was a highly viscous liquid with complicated phase behavior. The recovery by lignin precipitation combined with liquid CO2 extraction could recover more than 85% GVL and 90% lignin without forming any problematic residue as in the distillation process. The remaining GVL remained in the raffinate containing a low amount of lignin and other compounds, which can be further processed to isolate the GVL and improve the recovery rate.
Cellulose | 2018
Marc Borrega; Patrik Ahvenainen; Eero Kontturi
The levelling-off degree of polymerization (LODP) is typically considered an apodictic number of each cellulosic source that relates to the length of its cellulose crystallites. In this study, we have performed hydrothermal and alkaline treatments on bleached birch kraft pulp to adjust the xylan content, and the resulting pulps have been subjected to acid hydrolysis to determine their LODP. The results show that hydrothermal treatments promote longitudinal alterations in the supramolecular structure of cellulose, represented by a linear decrease in the LODP with lowering the xylan content in the pulp. Moreover, a decrease in LODP is also observed after alkaline extraction of the birch kraft pulp, but the decrease as a function of xylan content differs from that observed after hydrothermal treatments. The results appear to indicate that the LODP is rather an artifact introduced during processing of the material than a true measure of the length of the crystallites in the native cellulose source.Graphical abstract