Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Bramkamp is active.

Publication


Featured researches published by Marc Bramkamp.


Molecular Microbiology | 2008

A novel component of the division‐site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD

Marc Bramkamp; Robyn Emmins; Louise Weston; Catriona Donovan; Richard A. Daniel; Jeff Errington

Cell division in bacteria is governed by a complex cytokinetic machinery in which the key player is a tubulin homologue, FtsZ. Most rod‐shaped bacteria divide precisely at mid‐cell between segregated sister chromosomes. Selection of the correct site for cell division is thought to be determined by two negative regulatory systems: the nucleoid occlusion system, which prevents division in the vicinity of the chromosomes, and the Min system, which prevents inappropriate division at the cell poles. In Bacillus subtilis recruitment of the division inhibitor MinCD to cell poles depends on DivIVA, and these proteins were thought to be sufficient for Min function. We have now identified a novel component of the division‐site selection system, MinJ, which bridges DivIVA and MinD. minJ mutants are impaired in division because MinCD activity is no longer restricted to cell poles. Although MinCD was thought to act specifically on FtsZ assembly, analysis of minJ and divIVA mutants showed that their block in division occurs downstream of FtsZ. The results support a model in which the main function of the Min system lies in allowing only a single round of division per cell cycle, and that MinCD acts at multiple levels to prevent inappropriate division.


Molecular Microbiology | 2009

Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases

Christian Schultz; Axel Niebisch; Astrid Schwaiger; Ulrike Viets; Sabine Metzger; Marc Bramkamp; Michael Bott

We previously showed that the 2‐oxoglutarate dehydrogenase inhibitor protein OdhI of Corynebacterium glutamicum is phosphorylated by PknG at Thr14, but that also additional serine/threonine protein kinases (STPKs) can phosphorylate OdhI. To identify these, a set of three single (ΔpknA, ΔpknB, ΔpknL), five double (ΔpknAG, ΔpknAL, ΔpknBG, ΔpknBL, ΔpknLG) and two triple deletion mutants (ΔpknALG, ΔpknBLG) were constructed. The existence of these mutants shows that PknA, PknB, PknG and PknL are not essential in C.u2003glutamicum. Analysis of the OdhI phosphorylation status in the mutant strains revealed that all four STPKs can contribute to OdhI phosphorylation, with PknG being the most important one. Only mutants in which pknG was deleted showed a strong growth inhibition on agar plates containing glutamine as carbon and nitrogen source. Thr14 and Thr15 of OdhI were shown to be phosphorylated in vivo, either individually or simultaneously, and evidence for up to two additional phosphorylation sites was obtained. Dephosphorylation of OdhI was shown to be catalysed by the phospho‐Ser/Thr protein phosphatase Ppp. Besides OdhI, the cell division protein FtsZ was identified as substrate of PknA, PknB and PknL and of the phosphatase Ppp, suggesting a role of these proteins in cell division.


Current Opinion in Microbiology | 2009

Division site selection in rod-shaped bacteria.

Marc Bramkamp; Suey van Baarle

Rod-shaped bacteria often divide with high precision at midcell to produce two equally sized daughter cells. The positioning of the division machinery in Escherichia coli and Bacillus subtilis is spatially regulated by two inhibitory systems, the nucleoid occlusion and the Min system. The current models suggest that the target of the inhibitory mechanism is the cytoskeletal element FtsZ and that the concerted action of nucleoid occlusion and Min are necessary for correct placement of the division machinery. However, recent advances show that at least the Min system also ensures that division occurs only once in a cell cycle and might also act downstream of FtsZ assembly.


Microbiology | 2009

Characterization and subcellular localization of a bacterial flotillin homologue

Catriona Donovan; Marc Bramkamp

The process of endospore formation in Bacillus subtilis is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a sigma-factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism B. subtilis. YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL in vivo. A yuaG disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.


Molecular Microbiology | 2006

Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis

Marc Bramkamp; Louise Weston; Richard A. Daniel; Jeff Errington

The small bitopic division protein FtsL is an essential part of the division machinery (divisome) in most eubacteria. In Bacillus subtilis FtsL is a highly unstable protein and the turnover has been implicated in regulation of division in response to DNA damage. N‐terminal deletions and a domain swap experiment identified the short cytoplasmic domain of FtsL as being required for instability. We then identified a zinc metalloprotease, YluC, required for turnover, and likely sequence motifs involved in substrate recognition. YluC belongs to the site‐2‐protease (S2P) family of proteases involved in regulated intramembrane proteolysis (RIP), which plays a role in diverse regulatory phenomena from bacteria to man. The yluC mutant, and strains with N‐terminal truncations of ftsL have a short cell phenotype, indicating that that FtsL is normally rate‐limiting for division. Coexpression experiments of FtsL and YluC in Escherichia coli corroborated a model in which FtsL is directly cleaved by the membrane metalloprotease. The results shed new light on the regulation of cell division in B.u2003subtilis and identify a novel class of targets for RIP.


Journal of Bacteriology | 2010

Subcellular Localization and Characterization of the ParAB System from Corynebacterium glutamicum

Catriona Donovan; Astrid Schwaiger; Reinhard Krämer; Marc Bramkamp

Faithful segregation of chromosomes and plasmids is a vital prerequisite to produce viable and genetically identical progeny. Bacteria use a specialized segregation system composed of the partitioning proteins ParA and ParB to segregate certain plasmids. Strikingly, homologues of ParA and ParB are found to be encoded in many chromosomes. Although mutations in the chromosomal Par system have effects on segregation efficiency, the exact mechanism by which the chromosomes are segregated into the daughter cells is not fully understood. We describe the polar localization of the ParB origin nucleoprotein complex in the actinomycete Corynebacterium glutamicum. ParB and the origin of replication were found to be stably localized to the cell poles. After replication, the origins move toward the opposite pole. Purified ParB was able to bind to the parS consensus sequence in vitro. C. glutamicum possesses two ParA-like partitioning ATPase proteins. Both proteins interact with ParB but show a slightly different subcellular localization and phenotype. While ParA might be part of a conventional partitioning system, PldP seems to play a role in division site selection.


Molecular Microbiology | 2012

A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria

Catriona Donovan; Boris Sieger; Reinhard Krämer; Marc Bramkamp

In eukaryotic and prokaryotic cells the establishment and maintenance of cell polarity is essential for numerous biological processes. In some bacterial species, the chromosome origins have been identified as molecular markers of cell polarity and polar chromosome anchoring factors have been identified, for example in Caulobacter crescentus. Although speculated, polar chromosome tethering factors have not been identified for Actinobacteria, to date. Here, using a minimal synthetic Escherichia coli system, biochemical and in vivo experiments, we provide evidence that Corynebacterium glutamicum cells tether the chromosome origins at the cell poles through direct physical interactions between the ParB–parS chromosomal centromere and the apical growth determinant DivIVA. The interaction between ParB and DivIVA proteins was also shown for other members of the Actinobacteria phylum, including Mycobacterium tuberculosis and Streptomyces coelicolor.


Molecular Microbiology | 2011

A bacterial dynamin‐like protein mediating nucleotide‐independent membrane fusion

Frank Bürmann; Nina Ebert; Suey van Baarle; Marc Bramkamp

Dynamins are a family of large GTPases that are involved in key cellular processes, where they mediate events of membrane fission and fusion. The dynamin superfamily is not restricted to eukaryotes but might have a bacterial origin, with many species containing an operon of two genes related to mitofusins. However, it is not clear whether bacterial dynamins promote membrane fission or fusion. The dynamin‐like protein DynA of Bacillus subtilis is remarkable in that it arose from a gene fusion of two dynamins and contains two separate dynamin‐like subunits and GTPase domains. We found that DynA exhibits strictly auto‐regulated GTP hydrolysis, and that progress through the GTPase cycle is concerted within DynA oligomers. Furthermore, we show that DynA can tether membranes and mediates nucleotide‐independent membrane fusion in vitro. This process merely requires magnesium as a cofactor. Our results provide a set of minimal requirements for membrane fusion by dynamin‐like proteins and have mechanistic implications in particular for the fusion of mitochondria.


PLOS ONE | 2010

The MinCDJ System in Bacillus subtilis Prevents Minicell Formation by Promoting Divisome Disassembly

Suey van Baarle; Marc Bramkamp

Background Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD. Methodology/Principal Findings We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome. Conclusions/Significance Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.


Molecular Membrane Biology | 2007

Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review).

Marc Bramkamp; Karlheinz Altendorf; Jörg-Christian Greie

P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in Bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in Bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusal prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K+ transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions.

Collaboration


Dive into the Marc Bramkamp's collaboration.

Top Co-Authors

Avatar

Karlheinz Altendorf

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio J. Pierik

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bärbel Friedrich

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge