Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc D. Grynpas is active.

Publication


Featured researches published by Marc D. Grynpas.


Journal of Bone and Mineral Research | 2015

Macrophages Promote Osteoblastic Differentiation In Vivo: Implications in Fracture Repair and Bone Homeostasis

Linda Vi; Gurpreet S. Baht; Heather Whetstone; Adeline Ng; Qingxia Wei; Raymond Poon; Sivakami Mylvaganam; Marc D. Grynpas; Benjamin A. Alman

Macrophages are activated in inflammation and during early phases of repair processes. Interestingly, they are also present in bone during development, but their function during this process is unclear. Here, we explore the function of macrophages in bone development, growth, and repair using transgenic mice to constitutively or conditionally deplete macrophages. Depletion of macrophages led to early skeletal growth retardation and progressive osteoporosis. By 3 months of age, macrophage‐deficient mice displayed a 25% reduction in bone mineral density and a 70% reduction in the number of trabecular bone compared to control littermates. Despite depletion of macrophages, functional osteoclasts were still present in bones, lining trabecular bone and the endosteal surface of the cortical bone. Furthermore, ablation of macrophages led to a 60% reduction in the number of bone marrow mesenchymal progenitor cells and a decrease in the ability of these cells to differentiate to osteoblasts. When macrophages were depleted during fracture repair, bone union was impaired. Calluses from macrophage‐deficient animals were smaller, and contained less bone and more fibrotic tissue deposition. Taken together, this shows that macrophages are crucial for maintaining bone homeostasis and promoting fracture repair by enhancing the differentiation of mesenchymal progenitors.


Biomaterials Research | 2017

Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review

Zeeshan Sheikh; Nader Hamdan; Yuichi Ikeda; Marc D. Grynpas; Bernhard Ganss; Michael Glogauer

Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.


Bone | 2015

Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone

Mitsuru Saito; Marc D. Grynpas; David B. Burr; Matthew R. Allen; Susan Y. Smith; Nancy Doyle; Norio Amizuka; Tomoka Hasegawa; Yoshikuni Kida; Keishi Marumo; Hitoshi Saito

Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality.


Stem Cells Translational Medicine | 2016

Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

Jeffrey Kiernan; Sally Hu; Marc D. Grynpas; John E. Davies; William L. Stanford

Age‐related osteoporosis is driven by defects in the tissue‐resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low‐turnover state precipitated by MSC loss leads to low‐quality bone that is unable to perform remodeling‐mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age‐related osteoporosis, we show long‐term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age‐related osteoporosis.


Journal of Bone and Mineral Research | 2015

Novel EP4 Receptor Agonist‐Bisphosphonate Conjugate Drug (C1) Promotes Bone Formation and Improves Vertebral Mechanical Properties in the Ovariectomized Rat Model of Postmenopausal Bone Loss

Careesa C Liu; Sally Hu; Gang Chen; John Georgiou; Steve Arns; Nag S. Kumar; Robert N. Young; Marc D. Grynpas

Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone‐targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3‐month‐old female Sprague‐Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle‐treated OVX and sham, prostaglandin E2 (PGE2), and mixture of unconjugated ALN‐LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose‐dependently increased bone volume in trabecular bone, which partially or completely reversed OVX‐induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose‐dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high‐dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN‐LK components was crucial to the drugs anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia.


Journal of The American Society of Nephrology | 2015

Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria

Nancy S. Krieger; John R. Asplin; Kevin K. Frick; Ignacio Granja; Christopher D. Culbertson; Adeline Ng; Marc D. Grynpas; David A. Bushinsky

Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation.


Neuromuscular Disorders | 2016

Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

Sung-Hee Yoon; Kim S. Sugamori; Marc D. Grynpas; Jane Mitchell

Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.


Journal of Bone and Mineral Research | 2016

Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix

Adeline H. Ng; Sidney Omelon; Fabio Variola; Bedilu Allo; Thomas L. Willett; Benjamin A. Alman; Marc D. Grynpas

Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long‐term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X‐ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age‐related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover.


Bone | 2014

Reduced trabecular bone mass and strength in mice overexpressing Gα11 protein in cells of the osteoblast lineage.

Ariana Dela Cruz; Michael Mattocks; Kim S. Sugamori; Marc D. Grynpas; Jane Mitchell

G protein-coupled receptors (GPCRs) require G proteins for intracellular signaling to regulate a variety of growth and maintenance processes, including osteogenesis and bone turnover. Bone maintenance events may be altered by changes in the activity or level of G proteins, which then modify signaling in bone cells such as osteoblasts. We have previously reported increased levels of Gα11 protein and signaling to phospholipase C/protein kinase C pathways in response to dexamethasone in osteoblastic UMR 106-01 cells. Here we generated pOBCol3.6-GNA11 transgenic mice that overexpress Gα11 protein in cells of the osteoblast lineage (G11-Tg mice). G11-Tg mice exhibit an osteopenic phenotype characterized by significant reductions in trabecular bone mineral density, thickness, number and strength. The numbers of osteoblasts and osteocytes were unchanged in G11-Tg bone, but early markers of osteoblast differentiation, Alp and Bsp, were increased while the late stage differentiation marker Ocn was not changed suggesting reduced osteoblast maturation in G11-Tg trabecular bone which was accompanied by a decreased bone formation rate. Furthermore, in vitro cultures of G11-Tg primary osteoblasts show delayed osteoblast differentiation and mineralization. Histological analyses also revealed increased osteoclast parameters, accompanied by elevated mRNA expression of Trap and Ctsk. mRNA levels of Rankl and M-csf were elevated in vitro in bone marrow stromal cells undergoing osteogenesis and in trabecular bone in vivo. Together, these findings demonstrate that increasing Gα11 protein expression in osteoblasts can alter gene expression and result in a dual mechanism of trabecular bone loss.


American Journal of Primatology | 2016

Long-term effects of castration on the skeleton of male rhesus monkeys (Macaca mulatta).

Matthew J. Kessler; Qian Wang; Antonietta M. Cerroni; Marc D. Grynpas; Olga D. Gonzalez Velez; Richard G. Rawlins; Kelly F Ethun; Jeffrey Wimsatt; Terry B. Kensler; Kenneth P.H. Pritzker

While osteopenia (OPE) and osteoporosis (OPO) have been studied in various species of aging nonhuman primates and extensively in ovariectomized rhesus and cynomolgus macaques, there is virtually no information on the effects of castration on the skeleton of male nonhuman primates. Most information on castrated male primates comes from a few studies on the skeletons of eunuchs. This report used a subset of the Caribbean Primate Research Centers (CPRC) Cayo Santiago (CS) rhesus macaque skeletal collection to qualitatively and quantitatively compare the bone mineral density (BMD) of castrated and age‐matched intact males and, thereby, determine the long‐term effects of castration (orchidectomy) on bone. Lumbar vertebrae, femora, and crania were evaluated using dual‐energy X‐ray absorptiometry (DEXA or DXA) and digital radiography augmented, when fresh tissues were available, with autoradiography and histology. Results confirmed physical examinations of long bones that castration causes changes in the skeleton of male rhesus macaques similar to those found in eunuchs, including OPE and OPO of the vertebrae and femora, thinning of the skull, and vertebral fractures and kyphosis of the spine more severe than that caused by normal aging alone. Also like eunuchs, some castrated CS male rhesus monkeys had a longer life span than intact males or females. Based on these results and the effects of castration on other tissues and organs of eunuchs, on behavior, hormone profiles and possibly on cognition and visual perception of human and nonhuman primates, and other mammals, castrated male rhesus macaques should be used with caution for laboratory studies and should be considered a separate category from intact males. Despite these caveats, the castrated male rhesus macaque should make an excellent animal model in which to test hormone replacement therapies for boys and men orchidectomized for testicular and prostate cancer. Am. J. Primatol. 78:152–166, 2016.

Collaboration


Dive into the Marc D. Grynpas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Hu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Chen

Simon Fraser University

View shared research outputs
Researchain Logo
Decentralizing Knowledge