Marc Ferré
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Ferré.
Annals of Neurology | 2008
Arnaud Chevrollier; Virginie Guillet; Dominique Loiseau; Naïg Gueguen; Marie-Anne Pou de Crescenzo; Christophe Verny; Marc Ferré; Hélène Dollfus; Sylvie Odent; Dan Milea; Cyril Goizet; Patrizia Amati-Bonneau; Vincent Procaccio; Dominique Bonneau; Pascal Reynier
Hereditary optic neuropathies are heterogeneous diseases characterized by the degeneration of retinal ganglion cells leading to optic nerve atrophy and impairment of central vision. We found a common coupling defect of oxidative phosphorylation in fibroblasts of patients affected by autosomal dominant optic atrophy (mutations of OPA1), autosomal dominant optic atrophy associated with cataract (mutations of OPA3), and Lebers hereditary optic neuropathy, a disorder associated with point mutations of mitochondrial DNA complex I genes. Interestingly, the energetic defect was significantly more pronounced in Lebers hereditary optic neuropathy and autosomal dominant optic atrophy patients with a more complex phenotype, the so‐called plus phenotype. Ann Neurol 2008
Human Mutation | 2009
Marc Ferré; Dominique Bonneau; Dan Milea; Arnaud Chevrollier; Christophe Verny; Hélène Dollfus; Carmen Ayuso; Sabine Defoort; Catherine Vignal; Xavier Zanlonghi; Jean‐Francois Charlin; Josseline Kaplan; Sylvie Odent; Christian P. Hamel; Vincent Procaccio; Pascal Reynier; Patrizia Amati-Bonneau
We report the results of molecular screening in 980 patients carried out as part of their work‐up for suspected hereditary optic neuropathies. All the patients were investigated for Lebers hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten primary LHON‐causing mtDNA mutations and examining the entire coding sequences of the OPA1 and OPA3 genes, the two genes currently identified in ADOA. Molecular defects were identified in 440 patients (45% of screened patients). Among these, 295 patients (67%) had an OPA1 mutation, 131 patients (30%) had an mtDNA mutation, and 14 patients (3%), belonging to three unrelated families, had an OPA3 mutation. Interestingly, OPA1 mutations were found in 157 (40%) of the 392 apparently sporadic cases of optic atrophy. The eOPA1 locus‐specific database now contains a total of 204 OPA1 mutations, including 77 novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work‐up of optic neuropathies. Our results highlight the importance of investigating LHON‐causing mtDNA mutations as well as OPA1 and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease.
Annals of Neurology | 2007
Dominique Loiseau; Arnaud Chevrollier; Christophe Verny; Virginie Guillet; Naïg Gueguen; Marie-Anne Pou de Crescenzo; Marc Ferré; Marie-Claire Malinge; Agnès Guichet; Guillaume Nicolas; Patrizia Amati-Bonneau; Yves Malthièry; Dominique Bonneau; Pascal Reynier
Mutations of the mitofusin 2 gene (MFN2) may account for at least a third of the cases of Charcot–Marie–Tooth disease type 2 (CMT2). This study investigates mitochondrial cellular bioenergetics in MFN2‐related CMT2A.
Journal of Biological Chemistry | 2013
Valérie Desquiret-Dumas; Naïg Gueguen; Géraldine Leman; Stéphanie Baron; Valérie Nivet-Antoine; Arnaud Chevrollier; Emilie Vessières; Audrey Ayer; Marc Ferré; Dominique Bonneau; Daniel Henrion; Pascal Reynier; Vincent Procaccio
Background: The mechanism of action of resveratrol on sirtuin and mitochondrial metabolism remains elusive. Results: Resveratrol increases the mitochondrial NAD+ level by direct stimulation of complex I, leading to a SIRT3-dependent increase in substrate supplies. Conclusion: Our results link the direct stimulation by resveratrol of NADH oxidation to the SIRT3 activation. Significance: Mitochondrial NAD+/NADH ratio is a critical parameter mediating resveratrol effect on mitochondrial function. Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1–5 μm) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 μm). In HepG2 cells, this complex I activation increases the mitochondrial NAD+/NADH ratio. This higher NAD+ level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.
Neurogenetics | 2009
Julien Cassereau; Arnaud Chevrollier; Naïg Gueguen; Marie-Claire Malinge; Franck Letournel; Guillaume Nicolas; Laurence Richard; Marc Ferré; Christophe Verny; Frédéric Dubas; Vincent Procaccio; Patrizia Amati-Bonneau; Dominique Bonneau; Pascal Reynier
Mutations in GDAP1, an outer mitochondrial membrane protein responsible for recessive Charcot-Marie-Tooth disease (CMT4A), have also been associated with CMT2K, a dominant form of the disease. The three CMT2K patients we studied carried a novel dominant GDAP1 mutation, C240Y (c.719G > A). Mitochondrial respiratory chain complex I activity in fibroblasts from CMT2K patients was 40% lower than in controls, whereas the tubular mitochondria were 33% larger in diameter and the mitochondrial mass was 20% greater. Thus, besides the regulatory role GDAP1 plays in mitochondrial network dynamics, it may also be involved in energy production and in the control of mitochondrial volume.
Mitochondrion | 2011
Christophe Verny; Naig Guegen; Valérie Desquiret; Arnaud Chevrollier; Adriana Prundean; Frédéric Dubas; Julien Cassereau; Marc Ferré; Patrizia Amati-Bonneau; Dominique Bonneau; Pascal Reynier; Vincent Procaccio
Hereditary spastic paraplegia refers to a genetically heterogeneous syndrome. We identified five members of a family suffering from a late-onset spastic paraplegia-like disorder, carrying the homoplasmic m.9176 T>C mutation in the mitochondrial ATP6 gene. The clinical severity of the disease observed in the family was correlated with the biochemical and assembly defects of the ATP synthase. The m.9176 T>C mutation has been previously associated to Leigh syndrome or familial bilateral striatal necrosis. Other factors such as modifying genes may be involved in the phenotypic expression of the disease. The family belongs to the mitochondrial haplogroup J, previously shown to play a role in modulating the phenotype of mitochondrial diseases and be associated with longevity. Moreover other nuclear modifying genes or environmental factors may contribute to the disease phenotype. This finding extends the genetic heterogeneity of the hereditary spastic paraplegia together with the clinical spectrum of mutations of the ATP6 gene.
Journal of Medical Genetics | 2013
Sylvie Bannwarth; Vincent Procaccio; Anne Sophie Lebre; Claude Jardel; Annabelle Chaussenot; Claire Hoarau; Hassani Maoulida; Nathanaël Charrier; Xiaowu Gai; Hongbo M. Xie; Marc Ferré; Konstantina Fragaki; Gaëlle Hardy; Bénédicte Mousson de Camaret; Sandrine Marlin; Claire Marie Dhaenens; Abdelhamid Slama; Christophe Rocher; Jean Paul Bonnefont; Agnès Rötig; Nadia Aoutil; Mylène Gilleron; Valérie Desquiret-Dumas; Pascal Reynier; Jennifer Ceresuela; Laurence Jonard; Aurore Devos; Caroline Espil-Taris; Delphine Martinez; Pauline Gaignard
Abstract Background Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5–40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. Methods We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. Results 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as ‘hotspots’ of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. Conclusions Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.
American Journal of Human Genetics | 2014
Estelle Colin; Evelyne Huynh Cong; Géraldine Mollet; Agnès Guichet; Olivier Gribouval; Christelle Arrondel; Olivia Boyer; Laurent Daniel; Marie-Claire Gubler; Zelal Ekinci; Michel Tsimaratos; Brigitte Chabrol; Nathalie Boddaert; Alain Verloes; Arnaud Chevrollier; Naïg Gueguen; Valérie Desquiret-Dumas; Marc Ferré; Vincent Procaccio; Laurence Richard; Benoît Funalot; Anne Moncla; Dominique Bonneau; Corinne Antignac
Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS.
BMC Research Notes | 2011
Claire Angebault; Naïg Gueguen; Valérie Desquiret-Dumas; Arnaud Chevrollier; Virginie Guillet; Christophe Verny; Julien Cassereau; Marc Ferré; Dan Milea; Patrizia Amati-Bonneau; Dominique Bonneau; Vincent Procaccio; Pascal Reynier; Dominique Loiseau
BackgroundLebers hereditary optic neuropathy (LHON) is caused by mutations in the complex I subunits of the respiratory chain. Although patients have been treated with idebenone since 1992, the efficacy of the drug is still a matter of debate.MethodsWe evaluated the effect of idebenone in fibroblasts from LHON patients using enzymatic and polarographic measurements.ResultsComplex I activity was 42% greater in treated fibroblasts compared to controls (p = 0.002). Despite this complex I activity improvement, the effects on mitochondrial respiration were contradictory, leading to impairment in some cases and stimulation in others.ConclusionThese results indicate that idebenone is able to compensate the complex I deficiency in LHON patient cells with variable effects on respiration, indicating that the patients might not be equally likely to benefit from the treatment.
Annals of Neurology | 2008
K. Cornille; Dan Milea; Patrizia Amati-Bonneau; Vincent Procaccio; Lydie Zazoun; Virginie Guillet; Cécile Delettre; Naïg Gueguen; Dominique Loiseau; Agnès Muller; Marc Ferré; Arnaud Chevrollier; Douglas C. Wallace; Dominique Bonneau; Christian P. Hamel; Pascal Reynier; Guy Lenaers
A new c.740G>A (R247H) mutation in OPA1 alternate spliced exon 5b was found in a patient presenting with bilateral optic neuropathy followed by partial, spontaneous visual recovery. R247H fibroblasts from the patient and his unaffected father presented unusual highly tubular mitochondrial network, significant increased susceptibility to apoptosis, oxidative phosphorylation uncoupling, and altered OPA1 protein profile, supporting the pathogenicity of this mutation. These results suggest that the clinical spectrum of the OPA1‐associated optic neuropathies may be larger than previously described, and that spontaneous recovery may occur in cases harboring an exon 5b mutation. Ann Neurol 2008