Marc Montminy
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Montminy.
Cell | 1989
Gustavo A. Gonzalez; Marc Montminy
In this paper, we demonstrate that phosphorylation of CREB at Ser-133 is induced 6-fold in vivo, following treatment of PC12 cells with forskolin. By contrast, no such induction was observed in the kinase A-deficient PC12 line A126-1B2 (A126). Using F9 teratocarcinoma cells, which are unresponsive to cAMP, we initiated a series of transient expression experiments to establish a causal link between phosphorylation of CREB and trans-activation of cAMP-responsive genes. Inactivating the kinase A phosphorylation site by in vitro mutagenesis of the cloned CREB cDNA at Ser-133 completely abolished CREB transcriptional activity. As CREB mutants containing acidic residues in place of the Ser-133 phosphoacceptor were also transcriptionally inactive, these results suggest that phosphorylation of CREB may stimulate transcription by a mechanism other than by simply providing negative charge.
Science | 2005
Reuben J. Shaw; Katja A. Lamia; Debbie S. Vasquez; Seung Hoi Koo; Nabeel Bardeesy; Ronald A. DePinho; Marc Montminy; Lewis C. Cantley
The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)–activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element–binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1α expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.
Nature | 2001
Stephan Herzig; Fanxin Long; Ulupi S. Jhala; Susan Hedrick; Rebecca Quinn; Anton Bauer; Dorothea Rudolph; Günther Schütz; Cliff Yoon; Pere Puigserver; Bruce M. Spiegelman; Marc Montminy
When mammals fast, glucose homeostasis is achieved by triggering expression of gluconeogenic genes in response to glucagon and glucocorticoids. The pathways act synergistically to induce gluconeogenesis (glucose synthesis), although the underlying mechanism has not been determined. Here we show that mice carrying a targeted disruption of the cyclic AMP (cAMP) response element binding (CREB) protein gene, or overexpressing a dominant-negative CREB inhibitor, exhibit fasting hypoglycaemia and reduced expression of gluconeogenic enzymes. CREB was found to induce expression of the gluconeogenic programme through the nuclear receptor coactivator PGC-1, which is shown here to be a direct target for CREB regulation in vivo. Overexpression of PGC-1 in CREB-deficient mice restored glucose homeostasis and rescued expression of gluconeogenic genes. In transient assays, PGC-1 potentiated glucocorticoid induction of the gene for phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis. PGC-1 promotes cooperativity between cyclic AMP and glucocorticoid signalling pathways during hepatic gluconeogenesis. Fasting hyperglycaemia* is strongly correlated with type II diabetes, so our results suggest that the activation of PGC-1 by CREB in liver contributes importantly to the pathogenesis of this disease.
Nature | 1988
Karen K. Yamamoto; Gustavo A. Gonzalez; W. H. Biggs; Marc Montminy
A nuclear protein, CREB, has been isolated from rat brain and shown to stimulate transcription of the cyclic AMP-responsive gene somatostatin as a dimer. Biochemical analysis suggests that dimerization and transcriptional efficacy of CREB protein in vitro are regulated by phosphorylation. These findings demonstrate that cellular signals can modulate gene expression by regulating the covalent modification of pre-existing nuclear factors.
Nature | 2005
Seung Hoi Koo; Lawrence Flechner; Ling Qi; Xinmin Zhang; Robert A. Screaton; Shawn Jeffries; Susan Hedrick; Wu Xu; Fayçal Boussouar; Paul K. Brindle; Hiroshi Takemori; Marc Montminy
Glucose homeostasis is regulated systemically by hormones such as insulin and glucagon, and at the cellular level by energy status. Glucagon enhances glucose output from the liver during fasting by stimulating the transcription of gluconeogenic genes via the cyclic AMP-inducible factor CREB (CRE binding protein). When cellular ATP levels are low, however, the energy-sensing kinase AMPK inhibits hepatic gluconeogenesis through an unknown mechanism. Here we show that hormonal and energy-sensing pathways converge on the coactivator TORC2 (transducer of regulated CREB activity 2) to modulate glucose output. Sequestered in the cytoplasm under feeding conditions, TORC2 is dephosphorylated and transported to the nucleus where it enhances CREB-dependent transcription in response to fasting stimuli. Conversely, signals that activate AMPK attenuate the gluconeogenic programme by promoting TORC2 phosphorylation and blocking its nuclear accumulation. Individuals with type 2 diabetes often exhibit fasting hyperglycaemia due to elevated gluconeogenesis; compounds that enhance TORC2 phosphorylation may offer therapeutic benefits in this setting.
Cell | 1997
Ishwar Radhakrishnan; Gabriela C Pérez-Alvarado; David Parker; H. Jane Dyson; Marc Montminy; Peter E. Wright
The nuclear factor CREB activates transcription of target genes in part through direct interactions with the KIX domain of the coactivator CBP in a phosphorylation-dependent manner. The solution structure of the complex formed by the phosphorylated kinase-inducible domain (pKID) of CREB with KIX reveals that pKID undergoes a coil-->helix folding transition upon binding to KIX, forming two alpha helices. The amphipathic helix alphaB of pKID interacts with a hydrophobic groove defined by helices alpha1 and alpha3 of KIX. The other pKID helix, alphaA, contacts a different face of the alpha3 helix. The phosphate group of the critical phosphoserine residue of pKID forms a hydrogen bond to the side chain of Tyr-658 of KIX. The structure provides a model for interactions between other transactivation domains and their targets.
Nature Reviews Molecular Cell Biology | 2011
Judith Y. Altarejos; Marc Montminy
The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator–co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.
Cell | 1997
Toshihiro Nakajima; Chiharu Uchida; Stephen F. Anderson; Chee-Gun Lee; Jerard Hurwitz; Jeffrey D. Parvin; Marc Montminy
The coactivator CBP has been proposed to stimulate the expression of certain signal-dependent genes via its association with RNA polymerase II complexes. Here we show that complex formation between CBP and RNA polymerase II requires RNA helicase A (RHA), a nuclear DNA/RNA helicase that is related to the Drosophila male dosage compensation factor mle. In transient transfection assays, RHA was found to cooperate with CBP in mediating target gene activation via the CAMP responsive factor CREB. As a mutation in RHA that compromised its helicase activity correspondingly reduced CREB-dependent transcription, we propose that RHA may induce local changes in chromatin structure that promote engagement of the transcriptional apparatus on signal responsive promoters.
Cell | 2004
Robert A. Screaton; Michael D. Conkright; Yoshiko Katoh; Jennifer L. Best; Gianluca Canettieri; Shawn Jeffries; Ernesto Guzman; Sherry Niessen; John R. Yates; Hiroshi Takemori; Mitsuhiro Okamoto; Marc Montminy
Elevations in circulating glucose and gut hormones during feeding promote pancreatic islet cell viability in part via the calcium- and cAMP-dependent activation of the transcription factor CREB. Here, we describe a signaling module that mediates the synergistic effects of these pathways on cellular gene expression by stimulating the dephosphorylation and nuclear entry of TORC2, a CREB coactivator. This module consists of the calcium-regulated phosphatase calcineurin and the Ser/Thr kinase SIK2, both of which associate with TORC2. Under resting conditions, TORC2 is sequestered in the cytoplasm via a phosphorylation-dependent interaction with 14-3-3 proteins. Triggering of the calcium and cAMP second messenger pathways by glucose and gut hormones disrupts TORC2:14-3-3 complexes via complementary effects on TORC2 dephosphorylation; calcium influx increases calcineurin activity, whereas cAMP inhibits SIK2 kinase activity. Our results illustrate how a phosphatase/kinase module connects two signaling pathways in response to nutrient and hormonal cues.
Nature Genetics | 1999
Maciej T. Malecki; Ulupi S. Jhala; Anthony Antonellis; Liz Fields; Alessandro Doria; Tihamer Orban; Mohammed F. Saad; James H. Warram; Marc Montminy; Andrzej S. Krolewski
The helix-loop-helix (HLH) protein NEUROD1 (also known as BETA2) functions as a regulatory switch for endocrine pancreatic development. In mice homozygous for a targeted disruption of Neurod, pancreatic islet morphogenesis is abnormal and overt diabetes develops due in part to inadequate expression of the insulin gene (Ins2). NEUROD1, following its heterodimerization with the ubiquitous HLH protein E47, regulates insulin gene (INS) expression by binding to a critical E-box motif on the INS promoter. Here we describe two mutations in NEUROD1, which are associated with the development of type 2 diabetes in the heterozygous state. The first, a missense mutation at Arg 111 in the DNA-binding domain, abolishes E-box binding activity of NEUROD1. The second mutation gives rise to a truncated polypeptide lacking the carboxy-terminal trans-activation domain, a region that associates with the co-activators CBP and p300 (refs 3,4). The clinical profile of patients with the truncated NEUROD1 polypeptide is more severe than that of patients with the Arg 111 mutation. Our findings suggest that deficient binding of NEUROD1 or binding of a transcriptionally inactive NEUROD1 polypeptide to target promoters in pancreatic islets leads to the development of type 2 diabetes in humans.