Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Pypaert is active.

Publication


Featured researches published by Marc Pypaert.


Proceedings of the National Academy of Sciences of the United States of America | 2002

AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation

Haihong Zong; Jian Ming Ren; Lawrence H. Young; Marc Pypaert; James Mu; Morris J. Birnbaum; Gerald I. Shulman

Mitochondrial biogenesis is a critical adaptation to chronic energy deprivation, yet the signaling mechanisms responsible for this response are poorly understood. To examine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved fuel sensor, in mitochondrial biogenesis we studied transgenic mice expressing a dominant-negative mutant of AMPK in muscle (DN-AMPK). Both DN-AMPK and WT mice were treated with β-guanidinopropionic acid (GPA), a creatine analog, which led to similar reductions in the intramuscular ATP/AMP ratio and phosphocreatine concentrations. In WT mice, GPA treatment resulted in activation of muscle AMPK and mitochondrial biogenesis. However, the same GPA treatment in DN-AMPK mice had no effect on AMPK activity or mitochondrial content. Furthermore, AMPK inactivation abrogated GPA-induced increases in the expression of peroxisome proliferator-activated receptor γ coactivator 1α and calcium/calmodulin-dependent protein kinase IV (both master regulators of mitochondrial biogenesis). These data demonstrate that by sensing the energy status of the muscle cell, AMPK is a critical regulator involved in initiating mitochondrial biogenesis.


Journal of Clinical Investigation | 2005

Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents

Katsutaro Morino; Kitt Falk Petersen; Sylvie Dufour; Douglas E. Befroy; Jared Frattini; Nadine Shatzkes; Susanne Neschen; Morris F. White; Stefan Bilz; Saki Sono; Marc Pypaert; Gerald I. Shulman

To further explore the nature of the mitochondrial dysfunction and insulin resistance that occur in the muscle of young, lean, normoglycemic, insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured mitochondrial content by electron microscopy and insulin signaling in muscle biopsy samples obtained from these individuals before and during a hyperinsulinemic-euglycemic clamp. The rate of insulin-stimulated muscle glucose uptake was approximately 60% lower in the IR offspring than the control subjects and was associated with an approximately 60% increase in the intramyocellular lipid content as assessed by H magnetic resonance spectroscopy. Muscle mitochondrial density was 38% lower in the IR offspring. These changes were associated with a 50% increase in IRS-1 Ser312 and IRS-1 Ser636 phosphorylation and an approximately 60% reduction in insulin-stimulated Akt activation in the IR offspring. These data provide new insights into the earliest defects that may be responsible for the development of type 2 diabetes and support the hypothesis that reductions in mitochondrial content result in decreased mitochondrial function, which predisposes IR offspring to intramyocellular lipid accumulation, which in turn activates a serine kinase cascade that leads to defects in insulin signaling and action in muscle.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance

Jason K. Kim; Jonathan J. Fillmore; Yan Chen; Chunli Yu; Irene K. Moore; Marc Pypaert; E. Peer Lutz; Yuko Kako; Wanda Velez-Carrasco; Ira J. Goldberg; Jan L. Breslow; Gerald I. Shulman

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.


Journal of Clinical Investigation | 2004

AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury

Raymond R. Russell; Ji Li; David L. Coven; Marc Pypaert; Christoph Zechner; Monica Palmeri; Frank J. Giordano; James Mu; Morris J. Birnbaum; Lawrence H. Young

AMP-activated protein kinase (AMPK) is an important regulator of diverse cellular pathways in the setting of energetic stress. Whether AMPK plays a critical role in the metabolic and functional responses to myocardial ischemia and reperfusion remains uncertain. We examined the cardiac consequences of long-term inhibition of AMPK activity in transgenic mice expressing a kinase dead (KD) form of the enzyme. The KD mice had normal fractional shortening and no heart failure, cardiac hypertrophy, or fibrosis, although the in vivo left ventricular (LV) dP/dt was lower than that in WT hearts. During low-flow ischemia and postischemic reperfusion in vitro, KD hearts failed to augment glucose uptake and glycolysis, although glucose transporter content and insulin-stimulated glucose uptake were normal. KD hearts also failed to increase fatty acid oxidation during reperfusion. Furthermore, KD hearts demonstrated significantly impaired recovery of LV contractile function during postischemic reperfusion that was associated with a lower ATP content and increased injury compared with WT hearts. Caspase-3 activity and TUNEL-staining were increased in KD hearts after ischemia and reperfusion. Thus, AMPK is responsible for activation of glucose uptake and glycolysis during low-flow ischemia and plays an important protective role in limiting damage and apoptotic activity associated with ischemia and reperfusion in the heart.


Journal of Cell Biology | 2004

Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells

Agnes Ang; Tomohiko Taguchi; Stephen M Francis; Heike Fölsch; Lindsay J. Murrells; Marc Pypaert; Graham Warren; Ira Mellman

The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B–dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B–dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.


Nature Cell Biology | 2007

Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission

Nathan M. Sherer; Maik J. Lehmann; Luisa F. Jimenez-Soto; Christina Horensavitz; Marc Pypaert; Walther Mothes

The spread of retroviruses between cells is estimated to be 2–3 orders of magnitude more efficient when cells can physically interact with each other. The underlying mechanism is largely unknown, but transfer is believed to occur through large-surface interfaces, called virological or infectious synapses. Here, we report the direct visualization of cell-to-cell transmission of retroviruses in living cells. Our results reveal a mechanism of virus transport from infected to non-infected cells, involving thin filopodial bridges. These filopodia originate from non-infected cells and interact, through their tips, with infected cells. A strong association of the viral envelope glycoprotein (Env) in an infected cell with the receptor molecules in a target cell generates a stable bridge. Viruses then move along the outer surface of the filopodial bridge toward the target cell. Our data suggest that retroviruses spread by exploiting an inherent ability of filopodia to transport ligands from cell to cell.


Cell Host & Microbe | 2009

Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes.

Monique Gannagé; Dorothee Dormann; Randy A. Albrecht; Jörn Dengjel; Tania Torossi; Patrick C. Rämer; Monica Lee; Till Strowig; Frida Arrey; Gina Conenello; Marc Pypaert; Jens S. Andersen; Adolfo García-Sastre; Christian Münz

Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell by inducing apoptosis and also by blocking macroautophagy.


Traffic | 2003

Visualization of retroviral replication in living cells reveals budding into multivesicular bodies.

Nathan M. Sherer; Maik J. Lehmann; Luisa F. Jimenez-Soto; Alyssa Ingmundson; Stacy M. Horner; Gregor Cicchetti; Philip G. Allen; Marc Pypaert; James M. Cunningham; Walther Mothes

Retroviral assembly and budding is driven by the Gag polyprotein and requires the host‐derived vacuolar protein sorting (vps) machinery. With the exception of human immunodeficiency virus (HIV)‐infected macrophages, current models predict that the vps machinery is recruited by Gag to viral budding sites at the cell surface. However, here we demonstrate that HIV Gag and murine leukemia virus (MLV) Gag also drive assembly intracellularly in cell types including 293 and HeLa cells, previously believed to exclusively support budding from the plasma membrane. Using live confocal microscopy in conjunction with electron microscopy of cells generating fluorescently labeled virions or virus‐like particles, we observed that these retroviruses utilize late endosomal membranes/multivesicular bodies as assembly sites, implying an endosome‐based pathway for viral egress. These data suggest that retroviruses can interact with the vps sorting machinery in a more traditional sense, directly linked to the mechanism by which cellular proteins are sorted into multivesicular endosomes.


Journal of Cell Biology | 2005

Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells

Maik J. Lehmann; Nathan M. Sherer; Carolyn B. Marks; Marc Pypaert; Walther Mothes

Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, “surfing” toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body.


Cell | 2004

TROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi

Utpal Pal; Xin Li; Tian Wang; Ruth R. Montgomery; Nandhini Ramamoorthi; Aravinda M. deSilva; Fukai Bao; Xiaofeng Yang; Marc Pypaert; Deepti Pradhan; Fred S. Kantor; Sam R. Telford; John F. Anderson; Erol Fikrig

The Lyme disease agent Borrelia burgdorferi naturally persists in a cycle that primarily involves ticks and mammals. We have now identified a tick receptor (TROSPA) that is required for spirochetal colonization of Ixodes scapularis. B. burgdorferi outer surface protein A, which is abundantly expressed on spirochetes within the arthropod and essential for pathogen adherence to the vector, specifically bound to TROSPA. TROSPA mRNA levels in ticks increased following spirochete infestation and decreased in response to engorgement, events that are temporally linked to B. burgdorferi entry into and egress from the vector. The blockade of TROSPA by TROSPA antisera or by the repression of TROSPA expression via RNA interference reduced B. burgdorferi adherence to the I. scapularis gut in vivo, thereby preventing efficient colonization of the vector and subsequently reducing pathogen transmission to the mammalian host. Identification of an I. scapularis receptor for B. burgdorferi is the first step toward elucidating arthropod ligands that are required for survival of spirochetes in nature.

Collaboration


Dive into the Marc Pypaert's collaboration.

Top Co-Authors

Avatar

Graham Warren

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan M. Sherer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge