Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Tabie is active.

Publication


Featured researches published by Marc Tabie.


Journal of Robotics | 2013

Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

Luis M. Vaca Benitez; Marc Tabie; Niels Will; Steffen Schmidt; Mathias Jordan; Elsa Andrea Kirchner

The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG) signals are used.


PLOS ONE | 2013

On the Applicability of Brain Reading for Predictive Human-Machine Interfaces in Robotics

Elsa Andrea Kirchner; Su Kyoung Kim; Sirko Straube; Anett Seeland; Hendrik Wöhrle; Mario Michael Krell; Marc Tabie; Manfred Fahle

The ability of todays robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.


PLOS ONE | 2014

Multimodal Movement Prediction - Towards an Individual Assistance of Patients

Elsa Andrea Kirchner; Marc Tabie; Anett Seeland

Assistive devices, like exoskeletons or orthoses, often make use of physiological data that allow the detection or prediction of movement onset. Movement onset can be detected at the executing site, the skeletal muscles, as by means of electromyography. Movement intention can be detected by the analysis of brain activity, recorded by, e.g., electroencephalography, or in the behavior of the subject by, e.g., eye movement analysis. These different approaches can be used depending on the kind of neuromuscular disorder, state of therapy or assistive device. In this work we conducted experiments with healthy subjects while performing self-initiated and self-paced arm movements. While other studies showed that multimodal signal analysis can improve the performance of predictions, we show that a sensible combination of electroencephalographic and electromyographic data can potentially improve the adaptability of assistive technical devices with respect to the individual demands of, e.g., early and late stages in rehabilitation therapy. In earlier stages for patients with weak muscle or motor related brain activity it is important to achieve high positive detection rates to support self-initiated movements. To detect most movement intentions from electroencephalographic or electromyographic data motivates a patient and can enhance her/his progress in rehabilitation. In a later stage for patients with stronger muscle or brain activity, reliable movement prediction is more important to encourage patients to behave more accurately and to invest more effort in the task. Further, the false detection rate needs to be reduced. We propose that both types of physiological data can be used in an and combination, where both signals must be detected to drive a movement. By this approach the behavior of the patient during later therapy can be controlled better and false positive detections, which can be very annoying for patients who are further advanced in rehabilitation, can be avoided.


Frontiers in Human Neuroscience | 2016

An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300

Elsa Andrea Kirchner; Su K. Kim; Marc Tabie; Hendrik Wöhrle; Michael Maurus; Frank Kirchner

Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operators cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload.


Sensors | 2017

A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

Hendrik Wöhrle; Marc Tabie; Su Kyoung Kim; Frank Kirchner; Elsa Andrea Kirchner

A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.


international congress on neurotechnology, electronics and informatics | 2014

Prediction of Movements by Online Analysis of Electroencephalogram with Dataflow Accelerators

Hendrik Wöhrle; Johannes Teiwes; Marc Tabie; Anett Seeland; Elsa Andrea Kirchner; Frank Kirchner

Brain Computer Interfaces (BCIs) allow to use psychophysiological data for a large range of innovative applications. One interesting application for rehabilitation robotics is to modulate exoskeleton controls by predicting movements of a human user before they are actually performed. However, usually BCIs are used mainly in artificial and stationary experimental setups. Reasons for this are, among others, the immobility of the utilized hardware for data acquisition, but also the size of the computing devices that are required for the analysis of the human electroencephalogram. Therefore, mobile processing devices need to be developed. A problem is often the limited processing power of these devices, especially if there are firm time constraints as in the case of movement prediction. Field programmable gate array (FPGA)-based application-specific dataflow accelerators are a possible solution here. In this paper we present the first FPGA-based processing system that is able to predict upcoming movements by analyzing the human electroencephalogram. We evaluate the system regarding computation time and classification performance and show that it can compete with a standard


international conference on artificial neural networks | 2012

Learning parameters of linear models in compressed parameter space

Yohannes Kassahun; Hendrik Wöhrle; Alexander Fabisch; Marc Tabie

We present a novel method of reducing the training time by learning parameters of a model at hand in compressed parameter space. In compressed parameter space the parameters of the model are represented by fewer parameters, and hence training can be faster. After training, the parameters of the model can be generated from the parameters in compressed parameter space. We show that for supervised learning, learning the parameters of a model in compressed parameter space is equivalent to learning parameters of the model in compressed input space. We have applied our method to a supervised learning domain and show that a solution can be obtained at much faster speed than learning in uncompressed parameter space. For reinforcement learning, we show empirically that searching directly the parameters of a policy in compressed parameter space accelerates learning.


biomedical engineering systems and technologies | 2014

Runtime Calibration of Online EEG based Movement Prediction using EMG Signals

Marc Tabie; Hendrik Woehrle; Elsa Andrea Kirchner

Prediction of voluntary movements from electroencephalographic (EEG) signals is widely used and investigated for applications like brain-computer interfaces (BCIs) or in the field of rehabilitation. Different combinations of signal processing and machine learning methods can be found in literature for solving this task. Machine learning algorithms suffer from small signal-to-noise ratios and non-stationarity of EEG signals. Due to the non-stationarity, prediction performance of a fixed classifier may degrade over time. This is because the shape of motor-related cortical potentials associated with movement prediction change over time and thus may no longer be well represented by the classifier. A solution is online calibration of the classifier. Therefore, we propose a novel approach in which movement onsets, detected by the analysis of electromyographic (EMG) signals are used to recalibrate the classifier during runtime. We conducted experiments with 8 subjects performing self-initiated, self-paced movements of the right arm. We investigated the differences of online calibration versus applying a fixed classifier. Further the effect of varying initial training instances ( 1 3 or 2 3 of available data) was examined. In both cases we found a significant improvement in prediction performance (p < 0:05) when the online calibration was used.


international conference on bio-inspired systems and signal processing | 2013

EMG Onset Detection - Comparison of Different Methods for a Movement Prediction Task based on EMG

Marc Tabie; Elsa Andrea Kirchner


international congress on neurotechnology, electronics and informatics | 2018

Memory and Processing Efficient Formula for Moving Variance Calculation in EEG and EMG Signal Processing

Mario Michael Krell; Marc Tabie; Hendrik Wöhrle; Elsa Andrea Kirchner

Collaboration


Dive into the Marc Tabie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Albiez

Forschungszentrum Informatik

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge