Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc W. van der Kamp is active.

Publication


Featured researches published by Marc W. van der Kamp.


Biochemistry | 2013

Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods in Computational Enzymology

Marc W. van der Kamp; Adrian J. Mulholland

Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.


Structure | 2010

Dynameomics: A Comprehensive Database of Protein Dynamics

Marc W. van der Kamp; R. Dustin Schaeffer; Amanda L. Jonsson; Alexander D. Scouras; Andrew M. Simms; Rudesh D. Toofanny; Noah C. Benson; Peter C. Anderson; Eric D. Merkley; Steven Rysavy; Dennis Bromley; David A. C. Beck; Valerie Daggett

The dynamic behavior of proteins is important for an understanding of their function and folding. We have performed molecular dynamics simulations of the native state and unfolding pathways of over 2000 protein/peptide systems (approximately 11,000 independent simulations) representing the majority of folds in globular proteins. These data are stored and organized using an innovative database approach, which can be mined to obtain both general and specific information about the dynamics and folding/unfolding of proteins, relevant subsets thereof, and individual proteins. Here we describe the project in general terms and the type of information contained in the database. Then we provide examples of mining the database for information relevant to protein folding, structure building, the effect of single-nucleotide polymorphisms, and drug design. The native state simulation data and corresponding analyses for the 100 most populated metafolds, together with related resources, are publicly accessible through http://www.dynameomics.org.


Journal of Molecular Biology | 2010

Pathogenic Mutations in the Hydrophobic Core of the Human Prion Protein Can Promote Structural Instability and Misfolding

Marc W. van der Kamp; Valerie Daggett

Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We used extensive molecular dynamics simulations of these five PrP mutants to compare their dynamics and conformations to those of the wild type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases.


Protein Engineering Design & Selection | 2009

The consequences of pathogenic mutations to the human prion protein

Marc W. van der Kamp; Valerie Daggett

Prion diseases, in which the conformational transition of the native prion protein (PrP) to a misfolded form causes aggregation and subsequent neurodegeneration, have fascinated the scientific community as this transmissible disease appears to be purely protein-based. Disease can arise due to genetic factors only. At least 30 single point mutations have been indicated to cause disease in humans. Somehow, these mutations must influence the stability, processing and/or cellular interactions of PrP, such that aggregation can occur and disease develops. In this review, the current evidence for such effects of single point mutations is discussed, indicating that PrP can be affected in many different ways, although questions remain about the mechanism by which mutations cause disease.


Journal of the Royal Society Interface | 2008

Biomolecular simulation and modelling: status, progress and prospects

Marc W. van der Kamp; Katherine E. Shaw; Christopher J. Woods; Adrian J. Mulholland

Molecular simulation is increasingly demonstrating its practical value in the investigation of biological systems. Computational modelling of biomolecular systems is an exciting and rapidly developing area, which is expanding significantly in scope. A range of simulation methods has been developed that can be applied to study a wide variety of problems in structural biology and at the interfaces between physics, chemistry and biology. Here, we give an overview of methods and some recent developments in atomistic biomolecular simulation. Some recent applications and theoretical developments are highlighted.


Biophysical Journal | 2010

Influence of pH on the Human Prion Protein: Insights into the Early Steps of Misfolding

Marc W. van der Kamp; Valerie Daggett

Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. Conversion from the normal cellular form (PrP(C)) or recombinant PrP (recPrP) to a misfolded form is pH-sensitive, in that misfolding and aggregation occur more readily at lower pH. To gain more insight into the influence of pH on the dynamics of PrP and its potential to misfold, we performed extensive molecular-dynamics simulations of the recombinant PrP protein (residues 90-230) in water at three different pH regimes: neutral (or cytoplasmic) pH (∼7.4), middle (or endosomal) pH (∼5), and low pH (<4). We present five different simulations of 50 ns each for each pH regime, amounting to a total of 750 ns of simulation time. A detailed analysis and comparison with experiment validate the simulations and lead to new insights into the mechanism of pH-induced misfolding. The mobility of the globular domain increases with decreasing pH, through displacement of the first helix and instability of the hydrophobic core. At middle pH, conversion to a misfolded (PrP(Sc)-like) conformation is observed. The observed changes in conformation and stability are consistent with experimental data and thus provide a molecular basis for the initial steps in the misfolding process.


Journal of the American Chemical Society | 2016

The Catalytic Mechanism of a Natural Diels–Alderase Revealed in Molecular Detail

Matthew J. Byrne; Nicholas R. Lees; Li-Chen Han; Marc W. van der Kamp; Adrian J. Mulholland; James E. M. Stach; Christine L. Willis; Paul R. Race

The Diels-Alder reaction, a [4 + 2] cycloaddition of a conjugated diene to a dienophile, is one of the most powerful reactions in synthetic chemistry. Biocatalysts capable of unlocking new and efficient Diels-Alder reactions would have major impact. Here we present a molecular-level description of the reaction mechanism of the spirotetronate cyclase AbyU, an enzyme shown here to be a bona fide natural Diels-Alderase. Using enzyme assays, X-ray crystal structures, and simulations of the reaction in the enzyme, we reveal how linear substrate chains are contorted within the AbyU active site to facilitate a transannular pericyclic reaction. This study provides compelling evidence for the existence of a natural enzyme evolved to catalyze a Diels-Alder reaction and shows how catalysis is achieved.


Journal of Physical Chemistry B | 2010

Testing High-Level QM/MM Methods for Modeling Enzyme Reactions: Acetyl-CoA Deprotonation in Citrate Synthase

Marc W. van der Kamp; Jolanta Zurek; Frederick R. Manby; Jeremy N. Harvey; Adrian J. Mulholland

Combined quantum mechanics/molecular mechanics (QM/MM) calculations with high levels of correlated ab initio theory can now provide benchmarks for enzyme-catalyzed reactions. Here, we use such methods to test various QM/MM methods and the sensitivity of the results to details of the models for an important enzyme reaction, proton abstraction from acetyl-coenzyme A in citrate synthase. We calculate multiple QM/MM potential energy surfaces up to the local coupled cluster theory (LCCSD(T0)) level, with structures optimized at hybrid density functional theory and Hartree-Fock levels. The influence of QM methods, basis sets, and QM region size is shown to be significant. Correlated ab initio QM/MM calculations give barriers in agreement with experiment for formation of the acetyl-CoA enolate intermediate. In contrast, B3LYP fails to identify the enolate as an intermediate, whereas BH&HLYP does. The results indicate that QM/MM methods and setup should be tested, ideally using high-level calculations, to draw reliable mechanistic conclusions.


Journal of Chemical Theory and Computation | 2014

Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme

Vojtěch Mlýnský; Pavel Banáš; Jiří Šponer; Marc W. van der Kamp; Adrian J. Mulholland; Michal Otyepka

We have analyzed the capability of state-of-the-art multiscale computational approaches to provide atomic-resolution electronic structure insights into possible catalytic scenarios of the hairpin ribozyme by evaluating potential and free energy surfaces of the reactions by various hybrid QM/MM methods. The hairpin ribozyme is a unique catalytic RNA that achieves rate acceleration similar to other small self-cleaving ribozymes but without direct metal ion participation. Guanine 8 (G8) and adenine 38 (A38) have been identified as the catalytically essential nucleobases. However, their exact catalytic roles are still being investigated. In line with the available experimental data, we considered two reaction scenarios involving protonated A38H(+) as a general acid which is further assisted by either canonical G8 or deprotonated G8(-) forms. We used the spin-component scaled Møller-Plesset (SCS-MP2) method at the complete basis set limit as the reference method. The semiempirical AM1/d-PhoT and SCC-DFTBPR methods provided acceptable activation barriers with respect to the SCS-MP2 data but predicted significantly different reaction pathways. DFT functionals (BLYP and MPW1K) yielded the same reaction pathway as the SCS-MP2 method. The activation barriers were slightly underestimated by the GGA BLYP functional, although with accuracy comparable to the semiempirical methods. The SCS-MP2 method and hybrid MPW1K functional gave activation barriers that were closest to those derived from experimentally measured rate constants.


Biochemistry | 2010

Diverse Effects on the Native β-Sheet of the Human Prion Protein Due to Disease-Associated Mutations

Wei Chen; Marc W. van der Kamp; Valerie Daggett

Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.

Collaboration


Dive into the Marc W. van der Kamp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge