Marcel Dreischarf
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcel Dreischarf.
Journal of Biomechanics | 2014
Marcel Dreischarf; Thomas Zander; A. Shirazi-Adl; Christian M. Puttlitz; Clayton J. Adam; Chen-Sheng Chen; Vijay K. Goel; Ata M. Kiapour; Yoon Hyuk Kim; K.M. Labus; J.P. Little; Won Man Park; Y.H. Wang; H.J. Wilke; A. Rohlmann; Hendrik Schmidt
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centers around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.
Journal of Biomechanics | 2016
Marcel Dreischarf; A. Shirazi-Adl; N. Arjmand; A. Rohlmann; Hendrik Schmidt
Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. During the last few decades, researchers have used a number of techniques to estimate spinal loads by measuring in vivo changes in the intradiscal pressure, body height, or forces and moments transmitted via instrumented vertebral implants. In parallel, computational models have been employed to estimate muscle forces and spinal loads under various static and dynamic conditions. Noteworthy is the increasing growth in latter computational investigations. This paper aims to review, compare and critically evaluate the existing literature on in vivo measurements and computational model studies of lumbar spinal loads to lay the foundation for future biomechanical studies. Towards this goal, the paper reviews in separate sections models dealing with static postures (standing, sitting, lying) as well as slow and fast dynamic activities (lifting, sudden perturbations and vibrations). The findings are helpful in many areas such as work place safety design and ergonomics, injury prevention, performance enhancement, implant design and rehabilitation management.
Journal of Biomechanics | 2010
Marcel Dreischarf; Thomas Zander; G. Bergmann; A. Rohlmann
Osseoligamentous spinal specimens buckle under even a small vertical compressive force. To allow higher axial forces, a compressive follower load (FL) was suggested previously that approximates the curvature of the spine without inducing intervertebral rotation in both the frontal and the sagittal planes. In in vitro experiments and finite element analyses, the location of the FL path is subjected to estimation by the investigator. Such non-optimized FLs may induce bending and so far it is still unknown how this affects the results of the study and their comparability. A symmetrical finite element model of the lumbar spine was employed to simulate upright standing while applying a follower load. In analogy to in vitro experiments, the path of this FL was estimated seven times by different members of our institutes spine group. Additionally, an optimized FL path was determined and additional moments of +/-7.5Nm were applied to simulate flexion and extension. Application of the optimized 500N compressive FL causes only a marginal alteration of the curvature (cardan angle L1-S1 in sagittal plane <0.25 degrees). An individual estimation of the FL path, however, results in flexions of up to 10.0 degrees or extensions of up to 12.3 degrees. The resulting angles for the different non-optimized FL paths depend on the magnitude of the bending moment applied and whether a differential or an absolute measurement is taken. A preceding optimization of the location of the FL path would increase the comparability of different studies.
Medical Engineering & Physics | 2013
Marcel Dreischarf; A. Rohlmann; Rui Zhu; Hendrik Schmidt; Thomas Zander
Knowledge about in vivo spinal compressive forces is a basic requirement for spinal biomechanics. Their direct measurement is not yet possible. Therefore, compressive forces are estimated from in vivo measured intradiscal pressure values. However, it is still not evident how precise these estimations are. A finite element model of the spine was employed to simulate elementary body positions and the compressive force at level L4-5 was calculated. This value was compared with different estimations calculated by multiplying the intradiscal pressure with the discs cross-sectional area and with a correction factor. A model specific and different previously employed correction factors were used. Separately, in vivo forces were estimated from previously measured pressure values. A model specific correction factor leads for all body positions to a good estimation (error <4%) of the force except for extension (error >27%). Non-model specific correction factors lead to estimation errors of up to 44%. When accounting for these limitations, in vivo forces were estimated e.g. for standing between 430 N and 600 N. Compressive forces can be estimated for non-extended body positions when the individual correction factor is known. In vivo forces can be estimated from intradiscal pressure values within a certain range.
PLOS ONE | 2014
Marcel Dreischarf; Laia Albiol; Antonius Rohlmann; Esther Pries; Maxim Bashkuev; Thomas Zander; Georg N. Duda; C. Druschel; Patrick Strube; Michael Putzier; Hendrik Schmidt
Background The understanding of the individual shape and mobility of the lumbar spine are key factors for the prevention and treatment of low back pain. The influence of age and sex on the total lumbar lordosis and the range of motion as well as on different lumbar sub-regions (lower, middle and upper lordosis) in asymptomatic subjects still merits discussion, since it is essential for patient-specific treatment and evidence-based distinction between painful degenerative pathologies and asymptomatic aging. Methods and Findings A novel non-invasive measuring system was used to assess the total and local lumbar shape and its mobility of 323 asymptomatic volunteers (age: 20–75 yrs; BMI <26.0 kg/m2; males/females: 139/184). The lumbar lordosis for standing and the range of motion for maximal upper body flexion (RoF) and extension (RoE) were determined. The total lordosis was significantly reduced by approximately 20%, the RoF by 12% and the RoE by 31% in the oldest (>50 yrs) compared to the youngest age cohort (20–29 yrs). Locally, these decreases mostly occurred in the middle part of the lordosis and less towards the lumbo-sacral and thoraco-lumbar transitions. The sex only affected the RoE. Conclusions During aging, the lower lumbar spine retains its lordosis and mobility, whereas the middle part flattens and becomes less mobile. These findings lay the ground for a better understanding of the incidence of level- and age-dependent spinal disorders, and may have important implications for the clinical long-term success of different surgical interventions.
Gait & Posture | 2014
A. Rohlmann; Marcel Dreischarf; Thomas Zander; Friedmar Graichen; G. Bergmann
Walking is one of the most important activities in daily life, and walking exposes the spine to a high number of loading cycles. Little is known about the spinal loads during walking. Telemeterized spinal implants can provide data about their loading during different activities. The aim of this study was to measure the loads on a vertebral body replacement (VBR) during level and staircase walking and to determine the effects of walking speed and using walking aids. Telemeterized VBRs were implanted in five patients suffering from compression fractures of the L1 or L3 lumbar vertebral body. The implant allows measurements of three force and three moment components. The resultant force on the VBR was measured during level and staircase walking, when walking on a treadmill at different speeds, and when using a wheeled invalid walker or crutches. On average, the resultant force on the VBR for level walking was 171% of the value for standing. This force value increased to 265% of the standing force when ascending stairs and to 225% when descending stairs. Walking speed had a strong effect on the implant force. Using a walker during ambulation on level ground reduced the force on the implant to 62% of standing forces, whereas using two crutches had only a minor effect. Walking causes much higher forces on the VBR than standing. A strong force reduction can be achieved by using a walker.
Medical Engineering & Physics | 2012
Marcel Dreischarf; A. Rohlmann; G. Bergmann; Thomas Zander
In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations.
Medical Engineering & Physics | 2016
Rizwan Arshad; Thomas Zander; Marcel Dreischarf; Hendrik Schmidt
Improved knowledge on spinal loads and trunk muscle forces may clarify the mechanical causes of various spinal diseases and has the potential to improve the current treatment options. Using an inverse dynamic musculoskeletal model, this sensitivity analysis was aimed to investigate the influence of lumbar spine rhythms and intra-abdominal pressure on the compressive and shear forces in L4-L5 disc and the trunk muscle forces during upper body inclination. Based on in vivo data, three different spine rhythms (SRs) were used along with alternative settings (with/without) of intra-abdominal pressure (IAP). Compressive and shear forces in L4-L5 disc as well as trunk muscle forces were predicted by inverse static simulations from standing upright to 55° of intermediate trunk inclination. Alternate model settings of intra-abdominal pressure and different spine rhythms resulted in significant variation of compression (763 N) and shear forces (195 N) in the L4-L5 disc and in global (454 N) and local (156 N) trunk muscle forces at maximum flexed position. During upper body inclination, the compression forces at L4-L5 disc were mostly released by IAP and increased for larger intervertebral rotation in a lumbar spine rhythm. This study demonstrated that with various possible assumptions of lumbar spine rhythm and intra-abdominal pressure, variation in predicted loads and muscles forces increase with larger flexion. It is therefore, essential to adapt these model parameters for accurate prediction of spinal loads and trunk muscle forces.
Journal of Biomechanics | 2013
Hendrik Schmidt; Maxim Bashkuev; Marcel Dreischarf; A. Rohlmann; Georg N. Duda; Hans-Joachim Wilke; A. Shirazi-Adl
Anterior shear has been implicated as a risk factor in spinal injuries. A 3D nonlinear poroelastic finite element model study of a lumbar motion segment L4-L5 was performed to predict the temporal shear response under various single and combined shear loads. Effects of nucleotomy and facetectomy as well as changes in the posture and facet gap distance were analyzed as well. Comparison of the predicted anterior displacement and stiffness response with available measurements indicates satisfactory agreement. Under shear loads up to 400 N, the model predicted an almost linear displacement response. With increasing shear load and/or compressive preload, the stiffening behavior becomes evident, primarily due to stretched collagen fibers and greater facet interactions. Removal of the facets markedly decreases the segmental stiffness in shear and thus highlights the importance of the facets in resisting shear force; 61-87% of the applied shear force is transmitted through the facets depending on the magnitude of the applied shear and compressive preload. Fluid exudation during the day as well as reduced facet gap distance and a more extended posture yielded higher facet joint forces. The shear resistance of the motion segment remains almost the same with time despite the transfer of load sharing from the disc to facets. Large forces on facet joints are computed especially under greater compression preloads, shear forces and extension rotations, as time progresses and with smaller gap distances. The disc contribution on the other hand increases under larger shear loads, smaller compression preloads, flexed postures, larger facet gap distances and at transient periods.
Journal of Biomechanics | 2015
Marcel Dreischarf; Hendrik Schmidt; Michael Putzier; Thomas Zander
Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoRs location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implants CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes.