Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Smid is active.

Publication


Featured researches published by Marcel Smid.


Cancer Cell | 2009

Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals

Xiang H.-F. Zhang; Qiongqing Wang; William L. Gerald; Clifford A. Hudis; Larry Norton; Marcel Smid; John A. Foekens; Joan Massagué

Metastasis may arise years after removal of a primary tumor. The mechanisms allowing latent disseminated cancer cells to survive are unknown. We report that a gene expression signature of Src activation is associated with late-onset bone metastasis in breast cancer. This link is independent of hormone receptor status or breast cancer subtype. In breast cancer cells, Src is dispensable for homing to the bones or lungs but is critical for the survival and outgrowth of these cells in the bone marrow. Src mediates AKT regulation and cancer cell survival responses to CXCL12 and TNF-related apoptosis-inducing ligand (TRAIL), factors that are distinctively expressed in the bone metastasis microenvironment. Breast cancer cells that lodge in the bone marrow succumb in this environment when deprived of Src activity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer

John A. Foekens; Anieta M. Sieuwerts; Marcel Smid; Maxime P. Look; Vanja de Weerd; Antonius W. M. Boersma; J.G.M. Klijn; Erik A.C. Wiemer; John W.M. Martens

In this study, we quantified 249 mature micro-RNA (miRNA) transcripts in estrogen receptor-positive (ER+) primary breast tumors of patients with lymph node-negative (LNN) disease to identify miRNAs associated with metastatic capability. In addition, the prognostic value of the candidate miRNAs was determined in ER−/LNN breast cancer. Unsupervised analysis in a prescreening set of 38 patients identified three subgroups predominantly driven by three miRNA signatures: an ER-driven luminal B-associated miRNA signature, a stromal miRNA signature, and an overexpressed miRNA cluster located on chromosome 19q23, but these intrinsic miRNA signatures were not associated with tumor aggressiveness. Supervised analysis in the initial subset and subsequent analysis in additional tumors significantly linked four miRNAs (miR-7, miR-128a, miR-210, and miR-516–3p) to ER+/LNN breast cancer aggressiveness (n = 147) and one miRNA (miR-210) to metastatic capability in ER−/LNN breast cancer (n = 114) and in the clinically important triple-negative subgroup (n = 69) (all P < 0.05). Bioinformatic analysis coupled miR-210 to hypoxia/VEGF signaling, miR-7 and miR-516–3p to cell cycle progression and chromosomal instability, and miR-128a to cytokine signaling. In conclusion, our work connects four miRNAs to breast cancer progression and to several distinct biological processes involved therein.


Journal of Clinical Oncology | 2006

Genes Associated With Breast Cancer Metastatic to Bone

Marcel Smid; Yixin Wang; J.G.M. Klijn; Anieta M. Sieuwerts; Yi Zhang; David Atkins; John W.M. Martens; John A. Foekens

PURPOSE The biology of tumors relapsing to bone is poorly understood. In this study, we initiated a search for genes that are implicated in tumors relapsing to bone in breast cancer. PATIENTS AND METHODS We analyzed 107 primary breast tumors in patients who were all lymph node negative at the time of diagnosis and all had experienced relapse. Total RNA isolated from frozen tumor samples was used to gather gene expression data using oligo microarrays. RESULTS A panel of 69 genes was found significantly differentially expressed between patients who experienced relapse to bone versus those who experienced relapse elsewhere in the body. The most differentially expressed gene, TFF1, was confirmed by quantitative reverse transcriptase polymerase chain reaction in an independent cohort (n = 122; P = .0015). Our differentially expressed genes, combined with a recently reported gene set relevant to tumors relapsing to bone in an animal model system, pointed to the involvement of the fibroblast growth factor receptor signaling pathway in preference of tumor cells that relapse to bone. Given that patients who experience relapse to bone may benefit from bisphosphonate therapy, we developed a classifier of 31 genes, which in an independent validation set correctly predicts all tumors relapsing to bone with a specificity of 50%. CONCLUSION Our study identifies a panel of genes relevant to bone metastasis in breast cancer. The subsequently developed classifier of tumors relapsing to bone could, after thorough confirmation on an extended number of independent samples, and in combination with our previously developed high-risk profile, provide a diagnostic tool for the recommendation of adjuvant bisphosphonate therapy in addition to endocrine therapy or chemotherapy.


Breast Cancer Research and Treatment | 2010

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

Antoinette Hollestelle; Jord H. A. Nagel; Marcel Smid; Suzanne Lam; Fons Elstrodt; Marijke Wasielewski; Ser Sue Ng; Pim J. French; Justine K. Peeters; Marieke J. Rozendaal; Muhammad Riaz; Daphne G. Koopman; Timo L.M. ten Hagen; Bertie de Leeuw; E.C. Zwarthoff; Amina Teunisse; Peter J. van der Spek; J.G.M. Klijn; Winand N.M. Dinjens; Stephen P. Ethier; Hans Clevers; Aart G. Jochemsen; Michael A. den Bakker; John A. Foekens; John W. M. Martens; Mieke Schutte

Breast cancer has for long been recognized as a highly diverse tumor group, but the underlying genetic basis has been elusive. Here, we report an extensive molecular characterization of a collection of 41 human breast cancer cell lines. Protein and gene expression analyses indicated that the collection of breast cancer cell lines has retained most, if not all, molecular characteristics that are typical for clinical breast cancers. Gene mutation analyses identified 146 oncogenic mutations among 27 well-known cancer genes, amounting to an average of 3.6 mutations per cell line. Mutations in genes from the p53, RB and PI3K tumor suppressor pathways were widespread among all breast cancer cell lines. Most important, we have identified two gene mutation profiles that are specifically associated with luminal-type and basal-type breast cancer cell lines. The luminal mutation profile involved E-cadherin and MAP2K4 gene mutations and amplifications of Cyclin D1, ERBB2 and HDM2, whereas the basal mutation profile involved BRCA1, RB1, RAS and BRAF gene mutations and deletions of p16 and p14ARF. These subtype-specific gene mutation profiles constitute a genetic basis for the heterogeneity observed among human breast cancers, providing clues for their underlying biology and providing guidance for targeted pharmacogenetic intervention in breast cancer patients.


Cell | 2013

Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma

Xiang H.-F. Zhang; Xin Jin; Srinivas Malladi; Yilong Zou; Yong H. Wen; Edi Brogi; Marcel Smid; John A. Foekens; Joan Massagué

How organ-specific metastatic traits arise in primary tumors remains unknown. Here, we show a role of the breast tumor stroma in selecting cancer cells that are primed for metastasis in bone. Cancer-associated fibroblasts (CAFs) in triple-negative (TN) breast tumors skew heterogeneous cancer cell populations toward a predominance of clones that thrive on the CAF-derived factors CXCL12 and IGF1. Limiting concentrations of these factors select for cancer cells with high Src activity, a known clinical predictor of bone relapse and an enhancer of PI3K-Akt pathway activation by CXCL12 and IGF1. Carcinoma clones selected in this manner are primed for metastasis in the CXCL12-rich microenvironment of the bone marrow. The evidence suggests that stromal signals resembling those of a distant organ select for cancer cells that are primed for metastasis in that organ, thus illuminating the evolution of metastatic traits in a primary tumor and its distant metastases.


Clinical Cancer Research | 2011

mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients

Anieta M. Sieuwerts; Bianca Mostert; Joan Bolt-de Vries; Dieter Peeters; Felix E. de Jongh; Jacqueline M.L. Stouthard; Luc Dirix; Peter A. van Dam; Anne van Galen; Vanja de Weerd; Jaco Kraan; Petra van der Spoel; Raquel Ramírez-Moreno; Carolien H.M. van Deurzen; Marcel Smid; Jack Yu; John Jiang; Yixin Wang; Jan W. Gratama; Stefan Sleijfer; John A. Foekens; John W.M. Martens

Purpose: Molecular characterization of circulating tumor cells (CTC) holds great promise. Unfortunately, routinely isolated CTC fractions currently still contain contaminating leukocytes, which makes CTC-specific molecular characterization extremely challenging. In this study, we determined mRNA and microRNA (miRNA) expression of potentially CTC-specific genes that are considered to be clinically relevant in breast cancer. Experimental Design: CTCs were isolated with the epithelial cell adhesion molecule–based CellSearch Profile Kit. Selected genes were measured by real-time reverse transcriptase PCR in CTCs of 50 metastatic breast cancer patients collected before starting first-line systemic therapy in blood from 53 healthy blood donors (HBD) and in primary tumors of 8 of the patients. The molecular profiles were associated with CTC counts and clinical parameters and compared with the profiles generated from the corresponding primary tumors. Results: We identified 55 mRNAs and 10 miRNAs more abundantly expressed in samples from 32 patients with at least 5 CTCs in 7.5 mL of blood compared with samples from 9 patients without detectable CTCs and HBDs. Clustering analysis resulted in 4 different patient clusters characterized by 5 distinct gene clusters. Twice the number of patients from cluster 2 to 4 had developed both visceral and nonvisceral metastases. Comparing transcript levels in CTCs with those measured in corresponding primary tumors showed clinically relevant discrepancies in estrogen receptor and HER2 levels. Conclusions: Our study shows that molecular profiling of low numbers of CTCs in a high background of leukocytes is feasible and shows promise for further studies on the clinical relevance of molecular characterization of CTCs. Clin Cancer Res; 17(11); 3600–18. ©2011 AACR.


The EMBO Journal | 2005

Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks

George A. Garinis; James Robert Mitchell; Michael Moorhouse; Katsuhiro Hanada; Harm de Waard; Dimitri Vandeputte; Judith Jans; Karl Brand; Marcel Smid; Peter J. van der Spek; Jan H.J. Hoeijmakers; Roland Kanaar; Gijsbertus T. J. van der Horst

Photolyase transgenic mice have opened new avenues to improve our understanding of the cytotoxic effects of ultraviolet (UV) light on skin by providing a means to selectively remove either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6‐4) pyrimidone photoproducts. Here, we have taken a genomics approach to delineate pathways through which CPDs might contribute to the harmful effects of UV exposure. We show that CPDs, rather than other DNA lesions or damaged macromolecules, comprise the principal mediator of the cellular transcriptional response to UV. The most prominent pathway induced by CPDs is that associated with DNA double‐strand break (DSB) signalling and repair. Moreover, we show that CPDs provoke accumulation of γ‐H2AX, P53bp1 and Rad51 foci as well as an increase in the amount of DSBs, which coincides with accumulation of cells in S phase. Thus, conversion of unrepaired CPD lesions into DNA breaks during DNA replication may comprise one of the principal instigators of UV‐mediated cytotoxicity.


BMC Cancer | 2007

Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

Jack Yu; Anieta M. Sieuwerts; Yi Zhang; John W.M. Martens; Marcel Smid; J.G.M. Klijn; Yixin Wang; John A. Foekens

BackgroundPublished prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures.MethodsGene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients.ResultsThe apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways.ConclusionWe show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different.


Breast Cancer Research and Treatment | 2011

MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer

F. Germán Rodríguez-González; Anieta M. Sieuwerts; Marcel Smid; Maxime P. Look; Marion E. Meijer-van Gelder; Vanja de Weerd; Stefan Sleijfer; John W.M. Martens; John A. Foekens

MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression and which have been implicated in cancer. We evaluated whether five candidate predictive miRNAs, derived from a pilot study in which 249 miRNAs were assayed, were associated with clinical benefit of tamoxifen therapy in advanced breast cancer. These five miRNAs were measured in an independent series of 246 estrogen receptor (ER)-positive primary breast tumors of patients who received tamoxifen for advanced disease by quantitative Real Time PCR. Univariate analysis showed that higher expression levels of hsa-miR-30a-3p, hsa-miR-30c, and hsa-miR-182 were significantly associated with benefit of tamoxifen treatment and with longer PFS (all P-values <0.01). In multivariate analysis, corrected for the traditional predictive factors, only hsa-miRNA-30c was an independent predictor (P-value <0.01). Finally, in an attempt to understand the biology connected to this miRNA, Global testing pathway analysis showed an association of hsa-miRNA-30c expression with HER and RAC1 signaling pathways. We identified hsa-miRNA-30c as an independent predictor for clinical benefit of tamoxifen therapy in patients with advanced breast cancer. Assessment of tumor levels and connected pathways could be helpful to improve treatment strategies.


Journal of Clinical Oncology | 2009

Relevance of Breast Cancer Antiestrogen Resistance Genes in Human Breast Cancer Progression and Tamoxifen Resistance

Ton van Agthoven; Anieta M. Sieuwerts; Marion E. Meijer-van Gelder; Maxime P. Look; Marcel Smid; Jos Veldscholte; Stefan Sleijfer; John A. Foekens; Lambert C. J. Dorssers

PURPOSE We have previously identified a set of breast cancer antiestrogen resistance (BCAR) genes causing estrogen independence and tamoxifen resistance in vitro using a functional genetic screen. Here, we explored whether these BCAR genes provide predictive value for tamoxifen resistance and prognostic information for tumor aggressiveness in breast cancer patients. PATIENTS AND METHODS mRNA levels of 10 BCAR genes (AKT1, AKT2, BCAR1, BCAR3, EGFR, ERBB2, GRB7, SRC, TLE3, and TRERF1) were measured in estrogen receptor-positive breast tumors using quantitative reverse-transcriptase polymerase chain reaction. Normalized mRNA levels were evaluated for association with progression-free survival (PFS) in 242 patients receiving tamoxifen as first-line monotherapy for recurrent disease, and with distant metastasis-free survival (MFS) in 413 lymph node-negative (LNN) primary breast cancer patients who did not receive systemic adjuvant therapy. RESULTS Concerning tamoxifen resistance, BCAR3, ERBB2, GRB7, and TLE3 mRNA levels were predictive for PFS, independent of traditional predictive factors. By combining GRB7 (or ERBB2) and TLE3 mRNA levels, patients could be classified in three subgroups with distinct PFS. For the evaluation of tumor aggressiveness, AKT2, EGFR, and TRERF1 mRNA levels were all significantly associated with MFS, independent of traditional prognostic factors. Using the combined AKT2 and EGFR mRNA status, four prognostic groups were identified with different MFS outcomes. CONCLUSION The majority of BCAR genes, which were revealed to confer tamoxifen resistance and estrogen independence in vitro by functional screening, have clinical relevance, and associate with tamoxifen resistance and/or tumor aggressiveness in breast cancer patients.

Collaboration


Dive into the Marcel Smid's collaboration.

Top Co-Authors

Avatar

John A. Foekens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Anieta M. Sieuwerts

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

John W.M. Martens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Stefan Sleijfer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

John W. M. Martens

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maxime P. Look

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Vanja de Weerd

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mieke Timmermans

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Theo M. Luider

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Anne van Galen

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge