Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Spaargaren is active.

Publication


Featured researches published by Marcel Spaargaren.


Leukemia | 2003

Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936.

J J M van Dongen; A W Langerak; Monika Brüggemann; Paul Anthony Stuart Evans; Michael Hummel; Frances Louise Lavender; Eric Delabesse; Frederic Davi; Eduardus Maria Dominicus Schuuring; Ramón García-Sanz; J.H.J.M. van Krieken; J Droese; D. González; Christian Bastard; Helen E. White; Marcel Spaargaren; González M; Antonio Parreira; J. L. Smith; Gareth J. Morgan; Michael Kneba; Elizabeth Macintyre

In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH–JH, two DH–JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH–JH and DH–JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRγδ+ T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.


Blood | 2012

The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia.

Martin Fm de Rooij; Annemieke Kuil; Christian R. Geest; Eric Eldering; Betty Y. Chang; Joseph J. Buggy; Steven T. Pals; Marcel Spaargaren

Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.


Journal of Biological Chemistry | 1999

Heparan Sulfate-modified CD44 Promotes Hepatocyte Growth Factor/Scatter Factor-induced Signal Transduction through the Receptor Tyrosine Kinase c-Met

R. van der Voort; Taher E.I. Taher; Vera J. M. Wielenga; Marcel Spaargaren; R. Prevo; Lia Smit; G. David; G. Hartmann; E. Gherardi; Steven T. Pals

CD44 has been implicated in tumor progression and metastasis, but the mechanism(s) involved is as yet poorly understood. Recent studies have shown that CD44 isoforms containing the alternatively spliced exon v3 carry heparan sulfate side chains and are able to bind heparin-binding growth factors. In the present study, we have explored the possibility of a physical and functional interaction between CD44 and hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the receptor tyrosine kinase c-Met. The HGF/SF-c-Met pathway mediates cell growth and motility and has been implicated in tumor invasion and metastasis. We demonstrate that a CD44v3 splice variant efficiently binds HGF/SF via its heparan sulfate side chain. To address the functional relevance of this interaction, Namalwa Burkitt’s lymphoma cells were stably co-transfected with c-Met and either CD44v3 or the isoform CD44s, which lacks heparan sulfate. We show that, as compared with CD44s, CD44v3 promotes: (i) HGF/SF-induced phosphorylation of c-Met, (ii) phosphorylation of several downstream proteins, and (iii) activation of the MAP kinases ERK1 and -2. By heparitinase treatment and the use of a mutant HGF/SF with greatly decreased affinity for heparan sulfate, we show that the enhancement of c-Met signal transduction induced by CD44v3 was critically dependent on heparan sulfate moieties. Our results identify heparan sulfate-modified CD44 (CD44-HS) as a functional co-receptor for HGF/SF which promotes signaling through the receptor tyrosine kinase c-Met, presumably by concentrating and presenting HGF/SF. As both CD44-HS and c-Met are overexpressed on several types of tumors, we propose that the observed functional collaboration might be instrumental in promoting tumor growth and metastasis.


Leukemia | 2007

Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets: Report of the BIOMED-2 Concerted Action BHM4-CT98-3936.

Paul Anthony Stuart Evans; Ch Pott; Patricia J. T. A. Groenen; G. Salles; Frederic Davi; Françoise Berger; Josmar García; J.H.J.M. van Krieken; S. T. Pals; Ph. M. Kluin; Eduardus Maria Dominicus Schuuring; Marcel Spaargaren; E. Boone; D. González; B. Martinez; R. Villuendas; Paula Gameiro; Tim C. Diss; K. Mills; Gareth J. Morgan; G.I. Carter; B. J. Milner; D. Pearson; Michelle Hummel; W. Jung; M. Ott; Danielle Canioni; Kheira Beldjord; Christian Bastard; Marie-Hélène Delfau-Larue

Polymerase chain reaction (PCR) assessment of clonal immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements is an important diagnostic tool in mature B-cell neoplasms. However, lack of standardized PCR protocols resulting in a high level of false negativity has hampered comparability of data in previous clonality studies. In order to address these problems, 22 European laboratories investigated the Ig/TCR rearrangement patterns as well as t(14;18) and t(11;14) translocations of 369 B-cell malignancies belonging to five WHO-defined entities using the standardized BIOMED-2 multiplex PCR tubes accompanied by international pathology panel review. B-cell clonality was detected by combined use of the IGH and IGK multiplex PCR assays in all 260 definitive cases of B-cell chronic lymphocytic leukemia (n=56), mantle cell lymphoma (n=54), marginal zone lymphoma (n=41) and follicular lymphoma (n=109). Two of 109 cases of diffuse large B-cell lymphoma showed no detectable clonal marker. The use of these techniques to assign cell lineage should be treated with caution as additional clonal TCR gene rearrangements were frequently detected in all disease categories. Our study indicates that the BIOMED-2 multiplex PCR assays provide a powerful strategy for clonality assessment in B-cell malignancies resulting in high Ig clonality detection rates particularly when IGH and IGK strategies are combined.


Leukemia | 2007

Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies Report of the BIOMED-2 Concerted Action BHM4 CT98-3936

Monika Brüggemann; Helen E. White; P. Gaulard; Ramón García-Sanz; Paula Gameiro; S. Oeschger; Bharat Jasani; M. Ott; G. Delsol; Alberto Orfao; Markus Tiemann; H. Herbst; Anton W. Langerak; Marcel Spaargaren; E Moreau; Patricia J. T. A. Groenen; C. Sambade; Letizia Foroni; G.I. Carter; Michael Hummel; Christian Bastard; Frederic Davi; M-H Delfau-Larue; Michael Kneba; J J M van Dongen; Kheira Beldjord; T. J. Molina

Polymerase chain reaction (PCR) assessment of clonal T-cell receptor (TCR) and immunoglobulin (Ig) gene rearrangements is an important diagnostic tool in mature T-cell neoplasms. However, lack of standardized primers and PCR protocols has hampered comparability of data in previous clonality studies. To obtain reference values for Ig/TCR rearrangement patterns, 19 European laboratories investigated 188 T-cell malignancies belonging to five World Health Organization-defined entities. The TCR/Ig spectrum of each sample was analyzed in duplicate in two different laboratories using the standardized BIOMED-2 PCR multiplex tubes accompanied by international pathology panel review. TCR clonality was detected in 99% (143/145) of all definite cases of T-cell prolymphocytic leukemia, T-cell large granular lymphocytic leukemia, peripheral T-cell lymphoma (unspecified) and angioimmunoblastic T-cell lymphoma (AILT), whereas nine of 43 anaplastic large cell lymphomas did not show clonal TCR rearrangements. Combined use of TCRB and TCRG genes revealed two or more clonal signals in 95% of all TCR clonal cases. Ig clonality was mostly restricted to AILT. Our study indicates that the BIOMED-2 multiplex PCR tubes provide a powerful strategy for clonality assessment in T-cell malignancies assisting the firm diagnosis of T-cell neoplasms. The detected TCR gene rearrangements can also be used as PCR targets for monitoring of minimal residual disease.


Leukemia | 2012

EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations

A W Langerak; Patricia J. T. A. Groenen; Monika Brüggemann; Kheira Beldjord; C. Bellan; Lisa Bonello; E. Boone; G. I. Carter; M. Catherwood; Frederic Davi; Marie-Hélène Delfau-Larue; Tim C. Diss; Paul Anthony Stuart Evans; Paula Gameiro; R Garcia Sanz; D. Gonzalez; D. Grand; A. Håkansson; M. Hummel; Hongxiang Liu; L. Lombardia; Elizabeth Macintyre; B. J. Milner; S. Montes-Moreno; Eduardus Maria Dominicus Schuuring; Marcel Spaargaren; Elizabeth Hodges; J J M van Dongen

PCR-based immunoglobulin (Ig)/T-cell receptor (TCR) clonality testing in suspected lymphoproliferations has largely been standardized and has consequently become technically feasible in a routine diagnostic setting. Standardization of the pre-analytical and post-analytical phases is now essential to prevent misinterpretation and incorrect conclusions derived from clonality data. As clonality testing is not a quantitative assay, but rather concerns recognition of molecular patterns, guidelines for reliable interpretation and reporting are mandatory. Here, the EuroClonality (BIOMED-2) consortium summarizes important pre- and post-analytical aspects of clonality testing, provides guidelines for interpretation of clonality testing results, and presents a uniform way to report the results of the Ig/TCR assays. Starting from an immunobiological concept, two levels to report Ig/TCR profiles are discerned: the technical description of individual (multiplex) PCR reactions and the overall molecular conclusion for B and T cells. Collectively, the EuroClonality (BIOMED-2) guidelines and consensus reporting system should help to improve the general performance level of clonality assessment and interpretation, which will directly impact on routine clinical management (standardized best-practice) in patients with suspected lymphoproliferations.


Journal of Experimental Medicine | 2003

The B Cell Antigen Receptor Controls Integrin Activity through Btk and PLCγ2

Marcel Spaargaren; Esther A. Beuling; Mette L. Rurup; Helen P. Meijer; Melanie D. Klok; Sabine Middendorp; Rudolf W. Hendriks; Steven T. Pals

Integrin-mediated adhesion and B cell antigen receptor (BCR) signaling play a critical role in B cell development and function, including antigen-specific B cell differentiation. Here we show that the BCR controls integrin α4β1 (VLA-4)-mediated adhesion of B cells to vascular cell adhesion molecule-1 and fibronectin. Molecular dissection of the underlying signaling mechanism by a combined biochemical, pharmacological, and genetic approach demonstrates that this BCR-controlled integrin-mediated adhesion requires the (consecutive) activation of Lyn, Syk, phosphatidylinositol 3-kinase, Brutons tyrosine kinase (Btk), phospholipase C (PLC)γ2, IP3R-mediated Ca2+ release, and PKC. In contrast, activation of mitogen-activated protein kinase kinase (MEK) or extracellular signal–regulated kinase (ERK) is not required, and simultaneous activation of MEK, ERK, and PKB is not sufficient either. Furthermore, Btk is also involved in the control of integrin-mediated adhesion of preB cells. The control of integrin α4β1-mediated B cell adhesion by the BCR involves cytoskeletal reorganization and integrin clustering. These results reveal a novel function for the BCR and Btk, i.e., regulation of integrin α4β1 activity, thereby providing new insights into the control of B cell development and differentiation, as well as into the pathogenesis of the immunodeficiency disease X-linked agammaglobulineamia (XLA).


Leukemia | 2003

The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma

P W B Derksen; David J. J. de Gorter; H P Meijer; Richard J. Bende; M van Dijk; Henk M. Lokhorst; Andries C. Bloem; Marcel Spaargaren; Steven T. Pals

The evolution of multiple myeloma (MM) depends on complex signals from the bone marrow (BM) microenvironment, supporting the proliferation and survival of malignant plasma cells. An interesting candidate signal is hepatocyte growth factor/scatter factor (HGF), since its receptor Met is expressed on MM cells, while HGF is produced by BM stromal cells and by some MM cell lines, enabling para- or autocrine interaction. To explore this hypothesis, we studied the biological effects of HGF stimulation on MM cell lines and on primary MMs. We observed that Met is expressed by the majority of MM cell lines and by approximately half of the primary plasma cell neoplasms tested. Stimulation of MM cells with HGF led to the activation of the RAS/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathways, signaling routes that have been implicated in the regulation of cell proliferation and survival. Indeed, functional studies demonstrated that HGF has strong proliferative and anti-apoptotic effects on both MM cell lines and primary MM cells. Furthermore, by applying specific signal-transduction inhibitors, we demonstrated that MEK is required for HGF-induced proliferation, whereas activation of PI3K is required for both HGF-induced proliferation and for rescue of MM cells from apoptosis. Taken together, our data indicate that HGF is a potent myeloma growth and survival factor and suggest that the HGF/Met pathway is a potential therapeutic target in MM.


Cancer Research | 2008

Deletion of the WNT Target and Cancer Stem Cell Marker CD44 in Apc(Min/+) Mice Attenuates Intestinal Tumorigenesis

Jurrit Zeilstra; Sander P.J. Joosten; Maarten Dokter; Eugène Verwiel; Marcel Spaargaren; Steven T. Pals

Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or beta-catenin plays a critical role in the initiation of colorectal cancer. These mutations cause constitutively active beta-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to colorectal cancer precursor lesions, called dysplastic aberrant crypt foci. CD44 is a prominent WNT signaling target in the intestine and is selectively expressed on the renewing epithelial cells lining the crypts. The expression of CD44 is dramatically increased in aberrant crypt foci in both humans and tumor-susceptible Apc(Min/+) mice, suggesting a role for CD44 in intestinal tumorigenesis. To study this role, we crossed C57BL/6J-Cd44(-/-) mice with C57BL/6J-Apc(Min/+) mice. Compared with C57BL/6J-Cd44(+/+)/Apc(Min/+) mice, C57BL/6J-Cd44(-/-)/Apc(Min/+) mice showed an almost 50% reduction in the number of intestinal adenomas. This reduction was primarily caused by a decrease in the formation of aberrant crypts, implying the involvement of CD44 in tumor initiation. The absence of CD44 in the normal (nonneoplastic) crypts of Cd44(-/-)/Apc(Min/+) mice did not alter the proliferative capacity and size of the intestinal stem cell and transit-amplifying compartments. However, compared with Cd44(+/+)/Apc(Min/+) mice, Cd44(-/-)/Apc(Min/+) showed an increase in the number of apoptotic epithelial cells at the base of the crypt which correlated with an increased expression of the proapoptotic genes Bok and Dr6. Our results show an important role for CD44 in intestinal tumorigenesis and suggest that CD44 does not affect proliferation but is involved in the control of the balance between survival and apoptosis in the intestinal crypt.


Advances in Cancer Research | 2000

The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation

R. van der Voort; Taher E.I. Taher; Patrick W. B. Derksen; Marcel Spaargaren; R. van der Neut; Steven T. Pals

This article summarizes the structure, signal transduction and physiologic functions of the HGF/Met pathway, as well as its role in tumor growth, invasion, and metastasis. Moreover, it highlights recent studies indicating a role for the HGF/Met pathway in antigen-specific B-cell development and B-cell neoplasia.

Collaboration


Dive into the Marcel Spaargaren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W.J. Groen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge