Marcela Cristina de Moraes
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcela Cristina de Moraes.
Bioanalysis | 2009
Neila M. Cassiano; Juliana Cristina Barreiro; Marcela Cristina de Moraes; Regina V. Oliveira; Quezia B. Cass
This review presents an update on the use of restricted-access materials (RAMs) for direct injection of biological samples. The fundamental improvements in the preparation of tailored RAMs and the diversity of applications with these phases are presented. Insights into diminishing the matrix effect by the use of RAM supports in methods by LC-MS and into the low number of methods for enantiomeric separations by direct injections of biological samples are addressed. The diversity of systems that incorporate RAMs for selective sample clean-up or fractionation in proteome and peptidome analysis is also covered.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Joyce Izidoro da Silva; Marcela Cristina de Moraes; Lucas Campos Curcino Vieira; Arlene G. Corrêa; Quezia B. Cass; Carmen Lúcia Cardoso
The aim of the present work is to report on the optimized preparation of capillary enzyme reactors (ICERs) based on acetylcholinesterase (AChE, EC 3.1.1.7), for the screening of selective inhibitors. The AChE-ICERs were prepared by using the homobifunctional linker glutaraldehyde through Schiff base linkage. The enzyme was anchored onto a modified fused silica capillary and employed as an LC biochromatography column for online studies, with UV-vis detection. Not only did the tailored AChE-ICER result in maintenance of the activity of the immobilized enzyme, but it also significantly improved the stability of the enzyme in the presence of organic solvents. In addition, the kinetic studies demonstrated that the enzyme retained its activity with high stability, preserving its initial activity over 10months. The absence of non-specific matrix interactions, immediate recovery of the enzymatic activity, and short analysis time were the main advantages of this AChE-ICER. The use of AChE-ICER in the ligands recognition assay was validated by evaluation of four known reversible inhibitors (galanthamine, tacrine, propidium, and rivastigmine), and the same order of inhibitory potencies described in the literature was found. The immobilized enzyme was utilized in the screening of 21 coumarin derivatives. In this library, two new potent inhibitors were identified: coumarins 20 (IC(50) 17.14±3.50μM) and 21 (IC(50) 6.35±1.20μM), which were compared to the standard galanthamine (IC(50) 12.68±2.40μM). Considering the high inhibitory activities of these compounds, with respect to the AChE-ICER, the mechanism of action was investigated. Both coumarins 20 and 21 exhibited a competitive mechanism of action, furnishing K(i) values of 8.04±0.18 and 2.67±0.18μM, respectively. The results revealed that the AChE-ICER developed herein represents a useful tool for the biological screening of inhibitor candidates and evaluation of action mechanism.
Analytica Chimica Acta | 2009
Leonardo S. Andrade; Marcela Cristina de Moraes; Romeu C. Rocha-Filho; Orlando Fatibello-Filho; Quezia B. Cass
The development and validation of a multidimensional HPLC method using an on-line clean-up column coupled with amperometric detection employing a boron-doped diamond (BDD) electrode for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in bovine milk are presented. Aliquots of pre-prepared skim-milk samples were directly injected into a RAM octyl-BSA column in order to remove proteins that otherwise would interfere with milk analysis. After exclusion of the milk proteins, SMX and TMP were transferred to the analytical column (an octyl column) and the separation of the compounds from one another and from other endogenous milk components was achieved. SMX and TMP were detected amperometrically at 1.25V vs. Ag/AgCl (3.0molL(-1) KCl). Results with good linearity in the concentration ranges 50-800 and 25-400microgL(-1) for SMX and TMP, respectively, were obtained and no fouling of the BDD electrode was observed within the experimental period of several hours. The intra- and inter-assay coefficients of variation were less than 10% for both drugs and the obtained LOD values for SMX and TMP were 25.0 and 15.0microgL(-1), respectively.
Analyst | 2008
Carmen Lúcia Cardoso; Marcela Cristina de Moraes; Rafael V. C. Guido; Glaucius Oliva; Adriano D. Andricopulo; Irving W. Wainer; Quezia B. Cass
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi, and an immobilized enzyme reactor (IMER) has been developed for use in the on-line screening for GAPDH inhibitors. An IMER containing human GAPDH has been previously reported; however, these conditions produced a T. cruzi GAPDH-IMER with poor activity and stability. The factors affecting the stability of the human and T. cruzi GAPDHs in the immobilization process and the influence of pH and buffer type on the stability and activity of the IMERs have been investigated. The resulting T. cruzi GAPDH-IMER was coupled to an analytical octyl column, which was used to achieve chromatographic separation of NAD(+) from NADH. The production of NADH stimulated by d-glyceraldehyde-3-phosphate was used to investigate the activity and kinetic parameters of the immobilized T. cruzi GAPDH. The Michaelis-Menten constant (K(m)) values determined for d-glyceraldehyde-3-phosphate and NAD(+) were K(m) = 0.5 +/- 0.05 mM and 0.648 +/- 0.08 mM, respectively, which were consistent with the values obtained using the non-immobilized enzyme.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Marcela Cristina de Moraes; Kenia L. Vanzolini; Carmen Lúcia Cardoso; Quezia B. Cass
The diversity of small molecules available to produce truly innovative drugs associated with the wealth of known biological targets calls for key strategies in protein ligand screening. This review encompasses the recently developed bioaffinity-based strategies. A critical view of the use of zonal, frontal, and nonlinear chromatography with immobilized proteins is given. The association of these elution modes with the ligand fishing method, which uses nanomagnetics particles, is also addressed. A series of applications and how these new screening strategies can be used to determine the function, affinity, and activity parameters of proteins is discussed.
Journal of Chromatography A | 2012
Marcela Cristina de Moraes; Augusto J. Donato; Luiz Augusto Basso; Diógenes Santiago Santos; Carmen Lúcia Cardoso; Quezia B. Cass
The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The K(M) value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 ± 29.2 μM and 133 ± 14.9 μM, respectively). A new fourth-generation immucillin derivative (DI4G; IC(50)=40.6 ± 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay.
Current Pharmaceutical Design | 2016
Marcela Cristina de Moraes; Carmen Lúcia Cardoso; Cláudia Seidl; Ruin Moaddel; Quezia B. Cass
Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation, identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed.
Journal of the Brazilian Chemical Society | 2010
Rafael V. C. Guido; Carmen Lúcia Cardoso; Marcela Cristina de Moraes; Adriano D. Andricopulo; Quezia B. Cass; Glaucius Oliva
O desenvolvimento de metodos rapidos e eficazes para a identificacao de novas moleculas bioativas e fundamental para o processo de descoberta e planejamento de farmacos. A integracao de um sistema de cromatografia liquida de alta eficiencia (CLAE), com biorreatores como fase estacionaria (IMER) e uma estrategia atrativa e versatil para a triagem de colecoes de compostos visando a identificacao de novos agentes terapeuticos. Os parâmetros cineticos da enzima imobilizada gliceraldeido-3-fosfato desidrogenase (GAPDH) de Trypanosoma cruzi e humana foram determinados (T. cruzi: K M G3P
Química Nova | 2009
Carmen Lúcia Cardoso; Marcela Cristina de Moraes; Quezia B. Cass
The development and characterization of bioreactors or IMER (immobilized enzyme reactors) as research tools are important in the scope of medicinal chemistry and constitute an alternative for the rational development of drugs. This approach does not require highly purified enzymes or a great amount of protein, but increase the enzymatic stability against heat, organic solvents and pH, without too much loss of catalyst activity. Immobilized enzyme reactors (IMER) can be used for the accomplishment of high efficiency screening on-line and, thus inhibitors can be quickly identified. Here, we emphasize the development of IMER by use of different methods of immobilization and chromatographic supports. Their applications, in different areas of research, are also fully discussed.
Journal of Chromatography A | 2014
Marcela Cristina de Moraes; Caterina Temporini; Enrica Calleri; Giovanna Bruni; Diógenes Santiago Santos; Carmen Lúcia Cardoso; Quezia B. Cass; Gabriella Massolini
The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed.