Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcella Neri is active.

Publication


Featured researches published by Marcella Neri.


Neurology | 2004

Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia

Marco Fichera; M. Lo Giudice; Michele Falco; Maurizio Sturnio; Silvestra Amata; O. Calabrese; Stefania Bigoni; Elisa Calzolari; Marcella Neri

Hereditary spastic paraplegias (HSPs) are characterized by progressive lower extremity spasticity due to an axonal degeneration of motor and sensory neurons. We report a four-generation pedigree segregating an autosomal dominant phenotype for HSP and showing a linkage to the SPG10 locus, coding for Kinesin family member 5A. Subsequent to a denaturing high performance liquid chromatography (dHPLC) mutation screening we found a new missense mutation 838C>T (R280C) at an invariant arginine residue in a region involved in the microtubule binding activity.


Neuromuscular Disorders | 2013

The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice

Alessandra Ferlini; Marcella Neri; Francesca Gualandi

A large variety of mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophies, diseases affecting predominantly the striated muscles (skeletal and cardiac). Rare mutations also account for the allelic disorder isolated X-linked dilated cardiomyopathy. Dystrophin protein is encoded by a huge gene located on the X chromosome and the understanding of its complex genomic architecture has unraveled general key functions in gene expression regulation. Dystrophin also exists as a number of other tissue specific isoforms, some exclusively or predominantly expressed in the brain and/or in other tissues. Genotype definition of the dystrophin gene in patients with dystrophinopathies has taught us much about functionally important domains of the protein itself and has also provided insights regarding several regulatory mechanisms governing the gene expression profile. This review focuses on the current understanding of the dystrophin mutations heterogeneity, genotype-phenotype correlations, as well as interpretation of the functional significance of mutations that often require non routine genetic studies. It also explores the impact of genetic diagnosis on clinical definition and on the discovery of biomarkers and personalized therapies. Our aim is to offer an overview of the medical genetic approach on the dystrophin gene and dystrophinopathies with implications for clinical practice and therapeutic perspectives.


Human Mutation | 2014

Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients

Lucia Micale; Bartolomeo Augello; Claudia Maffeo; Angelo Selicorni; Federica Zucchetti; Carmela Fusco; Pasquelena De Nittis; Maria Teresa Pellico; Barbara Mandriani; Rita Fischetto; Loredana Boccone; Margherita Silengo; Elisa Biamino; Chiara Perria; Stefano Sotgiu; Gigliola Serra; Elisabetta Lapi; Marcella Neri; Alessandra Ferlini; Maria Luigia Cavaliere; Pietro Chiurazzi; Matteo Della Monica; Gioacchino Scarano; Francesca Faravelli; Paola Ferrari; Laura Mazzanti; Alba Pilotta; Maria Grazia Patricelli; Maria Francesca Bedeschi; Francesco Benedicenti

Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense‐mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D‐truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof‐of‐principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re‐expression of full‐length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers.


PLOS ONE | 2012

The DMD Locus Harbours Multiple Long Non-Coding RNAs Which Orchestrate and Control Transcription of Muscle Dystrophin mRNA Isoforms.

Matteo Bovolenta; Daniela Erriquez; Emanuele Valli; Simona Brioschi; C. Scotton; Marcella Neri; Maria Sofia Falzarano; Samuele Gherardi; M. Fabris; Paola Rimessi; Francesca Gualandi; Giovanni Perini; Alessandra Ferlini

The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.


Human Mutation | 2009

Identification and characterization of novel collagen VI non‐canonical splicing mutations causing ullrich congenital muscular dystrophy

E. Martoni; Anna Urciuolo; Patrizia Sabatelli; M. Fabris; Matteo Bovolenta; Marcella Neri; Paolo Grumati; Adele D'Amico; Marika Pane; Eugenio Mercuri; Enrico Bertini; Luciano Merlini; Paolo Bonaldo; Alessandra Ferlini; Francesca Gualandi

Splicing mutations occurring outside the invariant GT and AG dinucleotides are frequent in disease genes and the definition of their pathogenic potential is often challenging. We have identified four patients affected by Ullrich congenital muscular dystrophy and carrying unusual mutations of COL6 genes affecting RNA splicing. In three cases the mutations occurred in the COL6A2 gene and consisted of nucleotide substitutions within the degenerated sequences flanking the canonical dinucleotides. In the fourth case, a genomic deletion occurred which removed the exon8‐intron8 junction of the COL6A1 gene. These mutations induced variable splicing phenotypes, consisting of exon skipping, intron retention and cryptic splice site activation/usage. A quantitative RNA assay revealed a reduced level of transcription of the mutated in‐frame mRNA originating from a COL6A2 point mutation at intronic position +3. At variance, the transcription level of the mutated in‐frame mRNA originating from a genomic deletion which removed the splicing sequences of COL6A1 exon 8 was normal. These findings suggest a different transcriptional efficiency of a regulatory splicing mutation compared to a genomic deletion causing a splicing defect.


Journal of Clinical Investigation | 2016

POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking

Roland F.R. Schindler; C. Scotton; Jianguo Zhang; Chiara Passarelli; Beatriz Ortiz-Bonnin; Subreena Simrick; Thorsten Schwerte; Kar Lai Poon; Mingyan Fang; Susanne Rinné; Alexander Froese; Viacheslav O. Nikolaev; Christiane Grunert; Thomas Müller; Giorgio A. Tasca; Padmini Sarathchandra; Fabrizio Drago; Bruno Dallapiccola; Claudio Rapezzi; Eloisa Arbustini; Francesca Romana Di Raimo; Marcella Neri; Rita Selvatici; Francesca Gualandi; Fabiana Fattori; Antonello Pietrangelo; Wenyan Li; Hui Jiang; Xun Xu; Enrico Bertini

The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1(S201F) displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1(S201F) and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1(S201F) in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1(S191F)) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases.


Journal of Neuropathology and Experimental Neurology | 2010

Brody disease: insights into biochemical features of SERCA1 and identification of a novel mutation.

Gaetano Vattemi; Francesca Gualandi; Arie Oosterhof; Matteo Marini; Paola Tonin; Paola Rimessi; Marcella Neri; Valeria Guglielmi; Anna Russignan; Consuelo Poli; Toin H. van Kuppevelt; Alessandra Ferlini; Giuliano Tomelleri

Brody disease is an inherited disorder of skeletal muscle function characterized by increasing impairment of relaxation during exercise. The autosomal recessive form can be caused by mutations in the ATP2A1 gene, which encodes for the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) protein. We studied 2 siblings affected by Brody disease. The patients complained of exercise-induced delay of muscle relaxation and stiffness since childhood and had gene analysis of ATP2A1. Morphologic and biochemical studies were performed on a muscle biopsy from 1 patient. The biopsy showed fiber size variation and increased numbers of fibers with internal nuclei. Ultrastructural examination revealed dilatation of lateral cisternae and proliferation of tubular elements of the sarcoplasmic reticulum. By immunohistochemistry, SERCA1 was expressed in a normal pattern, but sarcoplasmic reticulum Ca2+-ATPase activity was significantly reduced. Immunoblotting after high-resolution 2-dimensional gel electrophoresis showed a significant difference in the amount of SERCA1 protein between the patient and controls. Both patients were found to have 2 previously unreported in-frame deletions in ATP2A1. Because SERCA1 protein has specific biochemical characteristics in our patient, these results underline the importance of a pathologic and biochemical analyses for the diagnosis. In addition, we describe 2 novel mutations in the ATP2A1 gene.


BMC Medical Genetics | 2010

Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies

Matteo Bovolenta; Marcella Neri; E. Martoni; Anna Urciuolo; Patrizia Sabatelli; M. Fabris; Paolo Grumati; Eugenio Mercuri; Enrico Bertini; Luciano Merlini; Paolo Bonaldo; Alessandra Ferlini; Francesca Gualandi

BackgroundMolecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions.MethodsWe have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored.ResultsA deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI.ConclusionsOur custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes.


Molecular Genetics and Metabolism | 2013

SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers

Valeria Guglielmi; Gaetano Vattemi; Francesca Gualandi; Nicol C. Voermans; Matteo Marini; C. Scotton; Elena Pegoraro; Arie Oosterhof; Magdolna Kósa; Ernő Zádor; Enza Maria Valente; Domenico De Grandis; Marcella Neri; Valentina Codemo; Antonio Novelli; Toin H. van Kuppevelt; Bruno Dallapiccola; Baziel G.M. van Engelen; Alessandra Ferlini; Giuliano Tomelleri

Brody disease is an inherited myopathy associated with a defective function of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) protein. Mutations in the ATP2A1 gene have been reported only in some patients. Therefore it has been proposed to distinguish patients with ATP2A1 mutations, Brody disease (BD), from patients without mutations, Brody syndrome (BS). We performed a detailed study of SERCA1 protein expression in muscle of patients with BD and BS, and evaluated the alternative splicing of SERCA1 in primary cultures of normal human muscle and in infant muscle. SERCA1 reactivity was observed in type 2 muscle fibers of patients with and without ATP2A1 mutations and staining intensity was similar in patients and controls. Immunoblot analysis showed a significant reduction of SERCA1 band in muscle of BD patients. In addition we demonstrated that the wild type and mutated protein exhibits similar solubility properties and that RIPA buffer improves the recovery of the wild type and mutated SERCA1 protein. We found that SERCA1b, the SERCA1 neonatal form, is the main protein isoform expressed in cultured human muscle fibers and infant muscle. Finally, we identified two novel heterozygous mutations within exon 3 of the ATP2A1 gene from a previously described patient with BD.


Neuromuscular Disorders | 2004

Two novel mutations in the spastin gene (SPG4) found by DHPLC mutation analysis

Michele Falco; Carmela Scuderi; Sebastiano A. Musumeci; Maurizio Sturnio; Marcella Neri; Stefania Bigoni; Luisa Maria Caniatti; Marco Fichera

The most common form of autosomal dominant hereditary spastic paraplegia is caused by mutations in the gene encoding spastin (SPG4), a member of the AAA family of ATPases. In the current study, we designed a denaturing high-performance liquid chromatography based protocol for the analysis of the SPG4 gene. Using this method, we detected two novel missense mutations, 1375A > G (R459G) and 1378C > T (R460C), one previously described five bases deletion (1215_1219del) and three polymorphic changes. This study suggests that denaturing high-performance liquid chromatography would be a fast and reliable tool in the investigation of the molecular defects in the SPG4 gene.

Collaboration


Dive into the Marcella Neri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Fabris

University of Ferrara

View shared research outputs
Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge