Marcelo Bighetti Toniollo
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Bighetti Toniollo.
Journal of Craniofacial Surgery | 2012
Marcelo Bighetti Toniollo; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria da Glória Chiarello de Mattos
Abstract This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Journal of Prosthodontic Research | 2013
Marcelo Bighetti Toniollo; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria da Glória Chiarello de Mattos
PURPOSE This finite element analysis (FEA) compared stress distribution on external surface of different morse taper implants, varying implant bodies length and dimensions of metal-ceramic crowns in order to maintain the occlusal alignment. METHODS Three-dimensional finite element (FE) models were designed representing a posterior left side segment of the mandible: group 0, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5mm length; group 2, 1 implant of 11 mm and 2 implants of 5mm length; group 3, 3 implants of 5mm length. The abutments heights were 3.5mm for 13 mm and 11 mm implants (regular) and 0.8mm for 5mm implants (short). Evaluation was performed on a computer program (Ansys software), with oblique loads of 365N for molars and 200 N for premolars, applied on ridges of cusps and grooves. RESULTS Abutments with 0.8mm height generated less von Mises stresses compared with 3.5mm height. The use of short implants associated with bigger crowns concentrated higher stress distribution and stress values on the surface implants, principally on the vestibular side (oblique direction of the loads). The more distal implant concentrated higher stress. CONCLUSIONS Moreover, these 5mm implants were positioned at the cortical bone level, which has higher elastic modulus and may have influenced at the stress distribution. However, despite the higher stresses, these implants were well able to withstand the applied forces.
Brazilian Dental Journal | 2009
Marcelo Bighetti Toniollo; Rodrigo Tiossi; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria da Glória Chiarello de Mattos
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 +/- 1 masculineC; group 2: stored in distilled water at 37 +/- 1 masculineC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 +/- 1 masculineC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 +/- 1 masculineC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 +/- 1 masculineC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukeys test (alpha=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Journal of Craniofacial Surgery | 2016
Marcelo Bighetti Toniollo; Ana Paula Macedo; Denise Pupim; Danilo Zaparolli; Maria da Glória Chiarello de Mattos
Aims: This study used finite element analysis to compare the biomechanical performance of splinted (SP) and nonsplinted (NSP) prostheses to regular and short length Morse taper implants in the posterior side of the mandible. Methods: The authors used 3-dimensional geometric models of regular implants (∅4 × 11 mm) and short implants (∅4 × 5 mm) housed in the corresponding bone edges of the posterior left mandibular hemiarch involving tooth 34. The 8 experimental groups were: the control group SP (3 regular implants rehabilitated with SP), group 1SP (2 regular and 1 short implants rehabilitated with SP), group 2SP (1 regular and 2 short implants rehabilitated with SP), group 3SP (3 short implants rehabilitated with SP), the control group NSP (3 regular implants rehabilitated with NSP), group 1NSP (2 and 1 short implants rehabilitated with NSP), group 2NSP (1 regular and 2 short implants rehabilitated with NSP), and group 3NSP (3 short implants rehabilitated with NSP). Oblique forces were simulated in the molars (365 N) and premolars (200 N). Qualitative and quantitative analysis of the distribution of Von Mises equivalent stress (implants, components, and infrastructure) was performed using the AnsysWorkbench10.0 software. Results and Conclusions: The results showed that the use of SP provides several advantages and benefits, reducing the stresses placed on the implant surface, on the transmucosal abutment areas and on the interior region of the infrastructure. The use of NSP was advantageous in reducing the stresses on the abutments and in the distal interproximal area of connection between the crowns.
Brazilian Dental Journal | 2012
Marcelo Bighetti Toniollo; Rodrigo Galo; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria da Glória Chiarello de Mattos
The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i(corr)) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.
International Journal of Oral & Maxillofacial Implants | 2017
Marcelo Bighetti Toniollo; Ana Paula Macedo; Denise Pupim; Danilo Zaparolli; Maria da Glória Chiarello de Mattos
PURPOSE The aim of this study was to compare the bone stress generated by rehabilitation using regular and short-length Morse taper implants (11 and 5 mm, respectively) in the same context and allied with splinted (SP) and nonsplinted (NSP) prostheses in the posterior area of the mandible using finite element analysis. MATERIALS AND METHODS Three-dimensional geometric models using regular implants (Ø4 × 11 mm) and short implants (Ø4 × 5 mm) were simulated with a left posterior mandible that had the first premolar tooth and all teeth posterior to that premolar removed. The four experimental groups were as follows: Group 1 NSP (two regular implants and one short implant rehabilitated with nonsplinted prostheses), Group 1 SP (two regular implants and one short implant rehabilitated with splinted prostheses), Group 2 NSP (one regular implant and two short implants rehabilitated with nonsplinted prostheses), and Group 2 SP (one regular implant and two short implants rehabilitated with splinted prostheses). Oblique forces were simulated in molars (365 N) and premolars (200 N). Qualitative and quantitative analyses of the minimum principal stress in bone were performed using the ANSYS Workbench software, version 10.0. RESULTS The splinted prostheses decreased the stress to the surrounding bone of short implants. Moreover, they also decreased the stress on the surrounding bone adjacent to the tooth. However, the splinted prostheses generated higher stress in the coverage of the surrounding bone for regular intermediate implants and prominently in the bone at the implant cervical region, at the edge crest, compared with the individualized groups. CONCLUSION The benefits in the use of splinted prostheses are notable for the preservation of the bone surrounding the short implants and tooth; however, it is necessary to evaluate each clinical situation because, in this context, the regular implants are at higher stress than the individualized implants.
International Journal of Oral & Maxillofacial Implants | 2017
Marcelo Bighetti Toniollo; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria de Mattos
PURPOSE The aim of this study was to compare the biomechanical performance of splinted or nonsplinted prostheses over short- or regular-length Morse taper implants (5 mm and 11 mm, respectively) in the posterior area of the mandible using finite element analysis. MATERIALS AND METHODS Three-dimensional geometric models of regular implants (Ø 4 × 11 mm) and short implants (Ø 4 × 5 mm) were placed into a simulated model of the left posterior mandible that included the first premolar tooth; all teeth posterior to this tooth had been removed. The four experimental groups were as follows: regular group SP (three regular implants were rehabilitated with splinted prostheses), regular group NSP (three regular implants were rehabilitated with nonsplinted prostheses), short group SP (three short implants were rehabilitated with splinted prostheses), and short group NSP (three short implants were rehabilitated with nonsplinted prostheses). Oblique forces were simulated in molars (365 N) and premolars (200 N). Qualitative and quantitative analyses of the minimum principal stress in bone were performed using ANSYS Workbench software, version 10.0. RESULTS The use of splinting in the short group reduced the stress to the bone surrounding the implants and tooth. The use of NSP or SP in the regular group resulted in similar stresses. CONCLUSIONS The best indication when there are short implants is to use SP. Use of NSP is feasible only when regular implants are present.
Materials Science and Engineering: C | 2017
Danilo Zaparolli; Raniel Fernandes Peixoto; Denise Pupim; Ana Paula Macedo; Marcelo Bighetti Toniollo; Maria da Glória Chiarello de Mattos
PURPOSE To compare the stress distribution of mandibular full dentures supported with implants according to the bar materials and manufacturing techniques using a qualitative photoelastic analysis. MATERIAL AND METHODS An acrylic master model simulating the mandibular arch was fabricated with four Morse taper implant analogs of 4.5×6mm. Four different bars were manufactured according to different material and techniques: fiber-reinforced resin (G1, Trinia, CAD/CAM), commercially pure titanium (G2, cpTi, CAD/CAM), cobalt‑chromium (G3, Co-Cr, CAD/CAM) and cobalt‑chromium (G4, Co-Cr, conventional cast). Standard clinical and laboratory procedures were used by an experienced dental technician to fabricate 4 mandibular implant-supported dentures. The photoelastic model was created based on the acrylic master model. A load simulation (150N) was performed in total occlusion against the antagonist. RESULTS Dentures with fiber-reinforced resin bar (G1) exhibited better stress distribution. Dentures with machined Co-Cr bar (G3) exhibited the worst standard of stress distribution, with an overload on the distal part of the posteriors implants, followed by dentures with cast Co-Cr bar (G4) and machined cpTi bar (G2). CONCLUSION The fiber-reinforced resin bar exhibited an adequate stress distribution and can serve as a viable alternative for oral rehabilitation with mandibular full dentures supported with implants. Moreover, the use of the G1 group offered advantages including reduced weight and less possible overload to the implants components, leading to the preservation of the support structure.
Brazilian Journal of Oral Sciences | 2012
Marcelo Bighetti Toniollo; Ana Paula Macedo; Daniel Palhares; Paulo Linares Calefi; Danilo Balero Sorgini; Maria da Glória Chiarello de Mattos
Aim: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). Methods: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1.5 mm thickness and the trabecular bone completed the bone block. Four groups were formed: group 11CBL (11 mm implant length on cortical bone level), group 11TBL (11 mm implant length on trabecular bone level), group 13CBL (13mm implant length on cortical bone level) and group 13TBL (13 mm implant length on trabecular bone level). Oblique 200 N loads were applied. Von Mises equivalent stresses in cortical and trabecular bones were evaluated with the same design program. Results: The results were shown qualitatively and quantitatively by standard scales for each type of bone. By the results obtained, it can be suggested that positioning the implant completely in trabecular bone brings harm with respect to the generated stresses. Its implantation in the cortical bone has advantages with respect to better anchoring and locking, reflecting a better dissipation of the stresses along the implant/bone interfaces. In addition, the search for anchoring the implant in its apical region in cortical bone is of great value to improve stabilization and consequently better stress distribution. Conclusions: The implant position slightly below the bone in relation to the bone crest brings advantages as the best long-term predictability with respect to the expected neck bone loss.
International Journal of Oral & Maxillofacial Implants | 2018
Marcelo Bighetti Toniollo; Ana Paula Macedo; Renata Cristina Silveira Rodrigues; Ricardo Faria Ribeiro; Maria da Glória Chiarello de Mattos