Marcelo Haberman
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Haberman.
Physiological Measurement | 2010
Enrique Mario Spinelli; Marcelo Haberman
Insulating electrodes, also known as capacitive electrodes, allow acquiring biopotentials without galvanic contact with the body. They operate with displacement currents instead of real charge currents, and the electrolytic electrode-skin interface is replaced by a dielectric film. The use of insulating electrodes is not the end of electrode interface problems but the beginning of new ones: coupling capacitances are of the order of pF calling for ultra-high input impedance amplifiers and careful biasing, guarding and shielding techniques. In this work, the general requirements of front ends for capacitive electrodes are presented and the different contributions to the overall noise are discussed and estimated. This analysis yields that noise bounds depend on features of the available devices as current and voltage noise, but the final noise level also depends on parasitic capacitances, requiring a careful shield and printed circuit design. When the dielectric layer is placed on the skin, the present-day amplifiers allow achieving noise levels similar to those provided by wet electrodes. Furthermore, capacitive electrode technology allows acquiring high quality ECG signals through thin clothes. A prototype front end for capacitive electrodes was built and tested. ECG signals were acquired with these electrodes in direct contact with the skin and also through cotton clothes 350 µm thick. They were compared with simultaneously acquired signals by means of wet electrodes and no significant differences were observed between both output signals.
IEEE Transactions on Biomedical Circuits and Systems | 2012
Marcelo Haberman; Enrique Mario Spinelli
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
Physiological Measurement | 2012
Enrique Mario Spinelli; Marcelo Haberman; Pablo Andrés García; Federico Nicolás Guerrero
Capacitive electrodes (CEs) allow for acquiring biopotentials without galvanic contact, avoiding skin preparation and the use of electrolytic gel. The signal quality provided by present CEs is similar to that of standard wet electrodes, but they are more sensitive to electrostatic charge interference and motion artifacts, mainly when biopotentials are picked up through clothing and coupling capacitances are reduced to tens of picofarads. When artifacts are large enough to saturate the preamplifier, several seconds (up to tens) are needed to recover a proper baseline level, and during this period biopotential signals are irremediably lost. To reduce this problem, a CE that includes a fast-recovery (FR) circuit is proposed. It works directly on the coupling capacitor, recovering the amplifier from saturation while preserving ultra-high input impedance, as a CE requires. A prototype was built and tested acquiring ECG signals. Several experimental data are presented, which show that the proposed circuit significantly reduces record segment losses due to amplifier saturation when working in real environments.
IEEE Transactions on Biomedical Circuits and Systems | 2016
Federico Nicolas Guerrero; Enrique Mario Spinelli; Marcelo Haberman
In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.
Medical & Biological Engineering & Computing | 2011
Marcelo Haberman; Augusto Cassino; Enrique Mario Spinelli
Biopotential measurements are very sensitive to electromagnetic interference (EMI) from power-lines. Interference conditions are mainly imposed by electric-field coupling, whose effects can be described by coupling capacitances. The main of them are the patient-to-ground and the patient-to-power-line capacitances, usually denoted as CB and CP, respectively. A technique to estimate these elements and experimental data obtained in different environmental conditions are presented. It was found that CB ranges from hundreds of pF to nF, and CP from hundredths of pF to few pF. The presented technique also lets it know the small amplifier-to-ground and amplifier-to-power-line capacitances. The knowledge of all these capacitances allows estimating the EMI conditions that biopotential amplifiers can be subject to, thus, resulting useful data for specifying their design requirements and constraints in real working conditions.
international conference of the ieee engineering in medicine and biology society | 2010
Marcelo Haberman; Enrique Mario Spinelli
A novel scheme and a digital approach to the Driven Right Leg Circuit (DRL) are presented. It presents an ultra high common mode (CM) reduction of power line interference (higher than 80dB) without endangering stability. This improves by 40–50dB the CM reduction provided by a classical analog DRL, retaining the same stability criterion. The improvement comes from the inclusion of a high Q resonator in parallel with the common mode amplifier. It provides a large gain at power line frequency (50/60 Hz) whereas it does not significantly affect the open loop gain for high frequencies. The proposed scheme can be thought as an analog circuit, but the accuracy required, mainly in the resonator frequency response, leads to a digital implementation. In this way, component ageing and thermal fluctuation problems are avoided, as well as the need for manual adjusting. A prototype of the proposed DRL circuit was built and tested in laboratory conditions showing an open-loop gain of 74dB at 50Hz. It was also tested by acquiring real EEG signals.
International Journal of Instrumentation Technology | 2012
Enrique Mario Spinelli; Gemma Hornero; Oscar Casas; Marcelo Haberman
A simple method for designing instrumentation fully-differential (FD) circuits based on standard single-ended (SE) operational amplifiers (OAs) is presented. It departs from a SE prototype that verifies the desired differential-mode transfer function, thereby leading to FD versions of the circuit. These circuits have a high common mode rejection ratio (CMRR), independent of component imbalances, and a unity common-mode gain. The proposed method does not allow the design of common-mode response, but it does verify common-mode stability, thus ensuring stable FD circuits. It is intended for instrumentation applications in which high CMRRs are required. The proposed approach makes it possible to design and implement inverter and non-inverter topologies as well. Design examples and experimental data are presented. Using general-purpose OAs and 5%-tolerance components, the CMRR of these circuits easily exceeds 90 to 100 dB.
international conference of the ieee engineering in medicine and biology society | 2010
Pablo Andrés García; Marcelo Haberman; Enrique Mario Spinelli
This article presents the development of a versatile hardware platform for brain computer interfaces (BCI). The aim of this work is to produce a small, autonomous and configurable BCI platform adaptable to the users needs.
Medical Engineering & Physics | 2016
Enrique Mario Spinelli; Federico Nicolás Guerrero; Pablo Andrés García; Marcelo Haberman
Capacitive Electrodes (CE) allow the acquisition of biopotentials through a dielectric layer, without the use of electrolytes, just by placing them on skin or clothing, but demands front-ends with ultra-high input impedances. This must be achieved while providing a path for bias currents, calling for ultra-high value resistors and special components and construction techniques. A simple CE that uses bootstrap techniques to avoid ultra-high value components and special materials is proposed. When electrodes are placed on the skin; that is, with coupling capacitances C(S) of around 100 pF, they present a noise level of 3.3 µV(RMS) in a 0.5-100 Hz bandwidth, which is appropriate for electrocardiography (ECG) measurements. Construction details of the CE and the complete circuit, including a fast recovery feature, are presented.
International Journal of Biomedical Engineering and Technology | 2015
Marcelo Haberman; Enrique Mario Spinelli; Pablo Andrés García; Federico Nicolás Guerrero
Capacitive electrodes allow to pick–up biopotentials through a dielectric layer, without using electrolytes. However, this technique is vulnerable to electric–field interference, mainly to common mode voltages produced by the 50 Hz power–line. A fully Capacitive Driven Right Leg (CDRL) circuit is proposed to reduce the patient common mode voltage vCM. The design of this circuit takes into account several factors as electrode impedance, stray coupling capacitances and amplifier transfer function response. All these parameters are addressed to ensure the circuits stability in most biopotential acquisition scenarios. Monte Carlo analyses were performed to find the worst conditions, resulting in a maximum CDRL gain between 70 and 80 dB. The CDRL was implemented as an independent block that can be used for different applications such as ECG, EMG or EEG. Several experimental results are presented, showing good quality recordings even using SE amplifiers, an appropriate approach for multichannel acquisition systems.