Marcelo J. Kogan
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo J. Kogan.
Biomaterials | 2012
Roger Prades; Simón Guerrero; Eyleen Araya; Claudia Molina; Edison Salas; Esther Zurita; Javier Selva; Gustavo Egea; Meritxell Teixidó; Marcelo J. Kogan; Ernest Giralt
The treatment of Alzheimers disease and many other brain-related disorders is limited because of the presence of the blood-brain barrier, which highly regulate the crossing of drugs. Metal nanoparticles have unique features that could contribute to the development of new therapies for these diseases. Nanoparticles have the capacity to carry several molecules of a drug; furthermore, their unique physico-chemical properties allow, for example, photothermal therapy to produce molecular surgery to destroy tumor cells and toxic structures. Recently, we demonstrated that gold nanoparticles conjugated to the peptide CLPFFD are useful to destroy the toxic aggregates of β-amyloid, similar to the ones found in the brains of patients with Alzheimers disease. However, nanoparticles, like many other compounds, have null or very low capacity to cross the blood-brain barrier. In order to devise a strategy to improve drug delivery to the brain, here we introduced the peptide sequence THRPPMWSPVWP into the gold nanoparticle-CLPFFD conjugate. This peptide sequence interacts with the transferrin receptor present in the microvascular endothelial cells of the blood-brain barrier, thus causing an increase in the permeability of the conjugate in brain, as shown by experiments in vitro and in vivo. Our results are highly relevant for the therapeutic applications of gold nanoparticles for molecular surgery in the treatment of neurodegenerative diseases such as Alzheimers disease.
The FASEB Journal | 2005
Muriel Arimon; Ismael Díez-Pérez; Marcelo J. Kogan; Nuria Durany; Ernest Giralt; Fausto Sanz; Xavier Fernàndez-Busquets
One of the hallmarks of Alzheimers disease is the self‐aggregation of the amyloid β peptide (Aβ) in extracellular amyloid fibrils. Among the different forms of Aβ, the 42‐residue fragment (Aβ1–42) readily self‐associates and forms nucleation centers from where fibrils can quickly grow. The strong tendency of Aβ1–42 to aggregate is one of the reasons for the scarcity of data on its fibril formation process. We have used atomic force microscopy (AFM) to visualize in liquid environment the fibrillogenesis of synthetic Aβ1–42 on hydrophilic and hydrophobic surfaces. The results presented provide nanometric resolution of the main structures characteristic of the several steps from monomeric Aβ1–42 to mature fibrils in vitro. Oligomeric globular aggregates of Aβ1–42 precede the appearance of protofibrils, the first fibrillar species, although we have not obtained direct evidence of oligomer‐protofibril interconversion. The protofibril dimensions deduced from our AFM images are consistent with a model that postulates the stacking of the peptide in a hairpin conformation perpendicular to the long axis of the protofibril, forming single β‐sheets ribbon‐shaped. The most abundant form of Aβ1–42 fibril exhibits a nodular structure with a ∼100‐nm periodicity. This length is very similar 1) to the length of protofibril bundles that are the dominant feature at earlier stages in the aggregation process, 2) to the period of helical structures that have been observed in the core of fibrils, and 3) to the distance between regularly spaced, structurally weak fibril points. Taken together, these data are consistent with the existence of a ∼100‐nm long basic protofibril unit that is a key fibril building block.
Molecular Immunology | 2009
Neus G. Bastús; Ester Sánchez-Tilló; Sílvia Pujals; Consol Farrera; Marcelo J. Kogan; Ernest Giralt; Antonio Celada; Jorge Lloberas; Victor Puntes
Macrophages that react against pathogenic organisms can also be activated with artificial nanometric units consisting of gold nanoparticles (Au NPs) with a peptide coating. Using bone marrow-derived macrophages, here we show that these cells have the capacity to recognize Au NPs once conjugated to two biomedically relevant peptides, the amyloid growth inhibitory peptide (AGIP) and the sweet arrow peptide (SAP), while they do not recognize peptides or NPs alone. The recognition of these conjugates by macrophages is mediated by a pattern recognition receptor, the TLR-4. Consequently, pro-inflammatory cytokines such as TNF-alpha, IL-1 beta and IL-6, as well as nitric oxide synthase were induced and macrophage proliferation was stopped when exposed to the peptide-conjugated Au NPs. Contamination by lipopolysaccharide in our experimental system was excluded. Furthermore, macrophage activation appeared to be independent of peptide length and polarity. As a result of macrophage activation, conjugated Au NPs were internalized and processed. These results open up a new avenue in the world of adjuvants and illustrate the basic requirements for the design of NP conjugates that efficiently reach their target.
Bioconjugate Chemistry | 2008
Ivonne Olmedo; Eyleen Araya; Fausto Sanz; Elias Medina; Jordi Arbiol; Pedro G. Toledo; A. Álvarez-Lueje; Ernest Giralt; Marcelo J. Kogan
In a previous work, we studied the interaction of beta-amyloid fibrils (Abeta) with gold nanoparticles (AuNP) conjugated with the peptide CLPFFD-NH2. Here, we studied the effect of changing the residue sequence of the peptide CLPFFD-NH2 on the efficiency of conjugation to AuNP, the stability of the conjugates, and the affinity of the conjugates to the Abeta fibrils. We conjugated the AuNP with CLPFFD-NH 2 isomeric peptides (CDLPFF-NH2 and CLPDFF-NH2) and characterized the resulting conjugates with different techniques including UV-Vis, TEM, EELS, XPS, analysis of amino acids, agarose gel electrophoresis, and CD. In addition, we determined the proportion of AuNP bonded to the Abeta fibrils by ICP-MS. AuNP-CLPFFD-NH2 was the most stable of the conjugates and presented more affinity for Abeta fibrils with respect to the other conjugates and bare AuNP. These findings help to better understand the way peptide sequences affect conjugation and stability of AuNP and their interaction with Abeta fibrils. The peptide sequence, the steric effects, and the charge and disposition of hydrophilic and hydrophobic residues are crucial parameters when considering the design of AuNP peptide conjugates for biomedical applications.
Bioconjugate Chemistry | 2012
Simón Guerrero; Santiago Rojas; Juan Mena; Juan Domingo Gispert; Gerardo A. Acosta; Fernando Albericio; Marcelo J. Kogan
Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their biocompatibility, size, and ease of characterization, as well as an extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for biomedical applications, including drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we studied ex vivo distribution of the conjugate C(AuNP)-LPFFD for its potential uses in the treatment of Alzheimers disease. In this study, we covalently labeled the conjugate with [(18)F]-fluorobenzoate to study the in vivo distribution of the AuNP by positron emission tomography (PET). After intravenous administration in rat, the highest concentration of the radiolabeled conjugate was found in the bladder and urine with a lower proportion in the intestine, demonstrating progressive accumulation compatible with biliary excretion of the conjugate. The conjugate also accumulated in the liver and spleen. PET imaging allowed us to study the in vivo biodistribution of the AuNPs in a noninvasive and sensitive way using a reduced number of animals. Our results show that AuNPs can be covalently and radioactively labeled for PET biodistribution studies.
Bioconjugate Chemistry | 2010
Leticia Hosta-Rigau; Ivonne Olmedo; Jordi Arbiol; Luis J. Cruz; Marcelo J. Kogan; Fernando Albericio
Functionalization of gold nanoparticles (AuNPs) with both a targeting peptide (an analogue of the peptide Bombesin) and a drug peptide ligand (an analogue of the RAF peptide) with the aim of improving selectivity in the delivery of the conjugates as well as the antitumor activity is described. Studies on the internalization mechanism of peptide-AuNP conjugates and viability of cells were carried out. An enhancement of the activity and selectivity of the peptide multifunctionalized conjugates was observed.
Bioconjugate Chemistry | 2009
Leticia Hosta; Mateu Pla-Roca; Jordi Arbiol; Carmen López-Iglesias; J. Samitier; Luis J. Cruz; Marcelo J. Kogan; Fernando Albericio
Two Cys-containing analogues of the anticancer drug Kahalalide F are synthesized and conjugated to 20 and 40 nm gold nanoparticles (GNPs). The resulting complexes are characterized by different analytical techniques to confirm the attachment of peptide to the GNPs. The self-assembly capacity of a peptide dramatically influences the final ratio number of molecules per nanoparticle, saturating the nanoparticle surface and prompting multilayered capping on the surface. In such way, the nanoparticle could act as a concentrator for the delivery of drugs, thereby increasing bioactivity. The GNP sizes and the conjugation have influence on the biological activities. Kahalalide F analogues conjugated with GNPs are located subcellularly at lysosome-like bodies, which may be related to the action mechanism of Kahalalide F. The results suggest that the selective delivery and activity of Kahalalide F analogues can be improved by conjugating the peptides to GNPs.
Nanoscale Research Letters | 2008
Eyleen Araya; Ivonne Olmedo; Neus G. Bastús; Simón Guerrero; Victor Puntes; Ernest Giralt; Marcelo J. Kogan
Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.
ChemBioChem | 2009
Sílvia Pujals; Neus G. Bastús; Eva Pereiro; Carmen López-Iglesias; Victor Puntes; Marcelo J. Kogan; Ernest Giralt
Golden bullets: The amphipathic proline‐rich cell‐penetrating peptide sweet arrow peptide (SAP) is able to transport 12 nm gold nanoparticles efficiently into HeLa cells, as observed by three microscopy techniques: transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and transmission X‐ray microscopy (TXM). Multiconjugation to such nanoparticles may provide a convenient method for unifying the key drug properties of high activity, capacity to home onto targets and delivery to therapeutic places of action.
International Journal of Nanomedicine | 2015
Carolina Velasco-Aguirre; Francisco Morales; Eduardo Gallardo-Toledo; Simón Guerrero; Ernest Giralt; Eyleen Araya; Marcelo J. Kogan
An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood–brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed.