Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcelo J. Murai is active.

Publication


Featured researches published by Marcelo J. Murai.


Nature Chemical Biology | 2012

Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

Jolanta Grembecka; Shihan He; Aibin Shi; Trupta Purohit; Andrew G. Muntean; Roderick Joseph Sorenson; H. D. Hollis Showalter; Marcelo J. Murai; Amalia Marie Belcher; Thomas Hartley; Jay L. Hess; Tomasz Cierpicki

Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.


Blood | 2012

Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia

Aibin Shi; Marcelo J. Murai; Shihan He; George Lund; Thomas Hartley; Trupta Purohit; Gireesh Reddy; Maksymilian Chruszcz; Jolanta Grembecka; Tomasz Cierpicki

Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a small-molecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K(d) = 22nM) and very effectively disrupts the bivalent protein-protein interaction between menin and MLL. MI-2-2 demonstrated specific and very pronounced activity in MLL leukemia cells, including inhibition of cell proliferation, down-regulation of Hoxa9 expression, and differentiation. Our results provide the rational and essential structural basis to design next generation of inhibitors for effective targeting of the menin-MLL interaction in leukemia and demonstrate a proof of concept that inhibition of complex multivalent protein-protein interactions can be achieved by a small-molecule inhibitor.


Journal of Biological Chemistry | 2011

Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein.

Marcelo J. Murai; Maksymilian Chruszcz; Gireesh Reddy; Jolanta Grembecka; Tomasz Cierpicki

Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an α-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two α-helical bundles and covered by a β-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.


PLOS ONE | 2013

Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

Luciana K. Rosselli-Murai; Luciana O. Almeida; Chiara Zagni; Pablo Galindo-Moreno; Miguel Padial-Molina; Sarah L. Volk; Marcelo J. Murai; Hector F. Rios; Cristiane H. Squarize; Rogerio M. Castilho

Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.


Journal of Biological Chemistry | 2010

The eukaryotic initiation factor (eIF)4G heat domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase

Ryosuke Watanabe; Marcelo J. Murai; Chingakham Ranjit Singh; Stephanie Fox; Miki; Katsura Asano

Translation re-initiation provides the molecular basis for translational control of mammalian ATF4 and yeast GCN4 mediated by short upstream open reading (uORFs) in response to eIF2 phosphorylation. eIF4G is the major adaptor subunit of eIF4F that binds the cap-binding subunit eIF4E and the mRNA helicase eIF4A and is also required for re-initiation in mammals. Here we show that the yeast eIF4G2 mutations altering eIF4E- and eIF4A-binding sites increase re-initiation at GCN4 and impair recognition of the start codons of uORF1 or uORF4 located after uORF1. The increase in re-initiation at GCN4 was partially suppressed by increasing the distance between uORF1 and GCN4, suggesting that the mutations decrease the migration rate of the scanning ribosome in the GCN4 leader. Interestingly, eIF4E overexpression suppressed both the phenotypes caused by the mutation altering eIF4E-binding site. Thus, eIF4F is required for accurate AUG selection and re-initiation also in yeast, and the eIF4G interaction with the mRNA-cap appears to promote eIF4F re-acquisition by the re-initiating 40 S subunit. However, eIF4A overexpression suppressed the impaired AUG recognition but not the increase in re-initiation caused by the mutations altering eIF4A-binding site. These results not only provide evidence that mRNA unwinding by eIF4A stimulates start codon recognition, but also suggest that the eIF4A-binding site on eIF4G made of the HEAT domain stimulates the ribosomal scanning independent of eIF4A. Based on the RNA-binding activities identified within the unstructured segments flanking the eIF4G2 HEAT domain, we discuss the role of the HEAT domain in scanning beyond loading eIF4A onto the pre-initiation complex.


Blood | 2014

The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV.

Marcelo J. Murai; Jonathan Pollock; Shihan He; Hongzhi Miao; Trupta Purohit; Adam L. Yokom; Jay L. Hess; Andrew G. Muntean; Jolanta Grembecka; Tomasz Cierpicki

Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV.


Protein Science | 2012

Detection of disordered regions in globular proteins using 13C‐detected NMR

Felicia Gray; Marcelo J. Murai; Jolanta Grembecka; Tomasz Cierpicki

Characterization of disordered regions in globular proteins constitutes a significant challenge. Here, we report an approach based on 13C‐detected nuclear magnetic resonance experiments for the identification and assignment of disordered regions in large proteins. Using this method, we demonstrate that disordered fragments can be accurately identified in two homologs of menin, a globular protein with a molecular weight over 50 kDa. Our work provides an efficient way to characterize disordered fragments in globular proteins for structural biology applications.


Protein Expression and Purification | 2018

The Machado-Joseph disease-associated expanded form of ataxin-3: Overexpression, purification, and preliminary biophysical and structural characterization

Miriam G.G. Contessotto; Luciana K. Rosselli-Murai; Maria Cimelia Garcia; Cristiano L. P. Oliveira; Iris L. Torriani; Iscia Lopes-Cendes; Marcelo J. Murai

An expansion of the polyglutamine (polyQ) tract within the deubiquitinase ataxin-3 protein is believed to play a role in a neurodegenerative disorder. Ataxin-3 contains a Josephin catalytic domain and a polyQ tract that renders it intrinsically prone to aggregate, and thus full-length protein is difficult to characterize structurally by high-resolution methods. We established a robust protocol for expression and purification of wild-type and expanded ataxin-3, presenting 19Q and 74Q, respectively. Both proteins are monodisperse as assessed by analytical size exclusion chromatography. Initial biophysical characterization was performed, with apparent transition melting temperature of expanded ataxin-3 lower than the wild-type counterpart. We further characterize the molecular envelope of wild-type and expanded polyQ tract in ataxin-3 using small angle X-ray scattering (SAXS). Characterization of protein-protein interactions between ataxin-3 and newly identified binding partners will benefit from our protocol.


Cancer Research | 2014

Abstract 3225: LEDGF IBD domain represents therapeutic target for MLL leukemia and HIV

Tomasz Cierpicki; Marcelo J. Murai; Jonathan Pollock; Trupta Purohit; Shihan He; Adam L. Yokom; Jay L. Hess; Andrew G. Muntean; Jolanta Grembecka

Lens epithelium-derived growth factor (LEDGF) is a chromatin associated protein implicated in cell survival, cancer, autoimmune diseases and HIV pathogenesis. LEDGF is also involved in recurring chromosomal translocations with nucleoporin NUP98 in acute leukemia, and the LEDGF/p75 isoform is consistently upregulated in a subset of acute myeloid leukemias (AML) resistant to chemotherapy. Moreover, it has been established that LEDGF is an essential co-factor required for oncogenic activity of MLL fusion proteins in leukemia. LEDGF interacts simultaneously with MLL and menin and is necessary for up-regulation of HOXA9 gene and for leukemogenic transformation by MLL fusion proteins in vivo. Therefore, LEDGF represent a valuable molecular target for therapeutic intervention as a novel targeted therapy for MLL leukemia patients. Furthermore, targeting LEDGF may represent an attractive alternative to inhibition of the menin-MLL interaction as it will allow preserving the function of menin, a known tumor suppressor in endocrine tissues. We determined the solution structure of MLL fragment bound to LEDGF IBD domain and identified a novel hydrophobic motif within MLL, which we called IBM2, that is required for high affinity interaction with LEDGF. Point mutations within IBM2 abolished leukemogenic activity of MLL-AF9, indicating that IBM2 represents a critical site for formation of a high affinity menin-MLL-LEDGF complex. Furthermore, we found that short peptide corresponding to IBM2 binds to IBD domain and disrupts the interaction of LEDGF with the menin-MLL complex, providing a proof of concept that the novel interface on IBD domain we identified represents a druggable site for small molecule intervention. LEDGF plays also an essential role in pathogenesis of HIV-1 virus and is required for integration of viral cDNA. Targeting HIV integrase to disrupt the interaction with LEDGF has been recognized as an attractive approach to develop new anti-viral agents. Importantly, the new MLL binding site on IBD domain we found overlaps with the binding site of HIV integrase. Therefore, targeting the IBM2 site on IBD may represent a novel approach to target the LEDGF-integrase interaction. In summary, our findings pave the way towards development of new therapeutic agents with dual applications for both MLL leukemias and HIV. Citation Format: Tomasz Cierpicki, Marcelo J. Murai, Jonathan Pollock, Trupta Purohit, Shihan He, Adam Yokom, Jay L. Hess, Andrew G. Muntean, Jolanta Grembecka. LEDGF IBD domain represents therapeutic target for MLL leukemia and HIV. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 3225. doi:10.1158/1538-7445.AM2014-3225


Immunity | 2015

The Pias-Like Coactivator Zmiz1 is a Direct and Selective Cofactor of Notch1 in T-Cell Development and Leukemia

Nancy Pinnell; Ran Yan; Hyo Je Cho; Theresa M. Keeley; Marcelo J. Murai; Yiran Liu; Amparo Serna Alarcon; Jason Qin; Qing Wang; Rork Kuick; Kojo S.J. Elenitoba-Johnson; Ivan Maillard; Linda C. Samuelson; Tomasz Cierpicki; Mark Y. Chiang

Collaboration


Dive into the Marcelo J. Murai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shihan He

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay L. Hess

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aibin Shi

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge