Marcelo M. Cavalcanti
Universidade Estadual de Maringá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo M. Cavalcanti.
Applied Mathematics and Computation | 2004
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; M.L. Santos
In this article we study the degenerate system (@r1,@r2>=0) subject to memory conditions on the boundary given [emailxa0protected]1(x)ut[emailxa0protected][emailxa0protected](u-v)[emailxa0protected]]0,+~[,@r2(x)vt[emailxa0protected]@a(u-v)[emailxa0protected]]0,+~[,[emailxa0protected]0,[emailxa0protected]!0^tg1(t-s)@[emailxa0protected][emailxa0protected](s)[emailxa0protected]1x]0,+~[,[emailxa0protected]0,[emailxa0protected]!0^tg2(t-s)@[emailxa0protected][emailxa0protected](s)[emailxa0protected]1x]0,+~[,(u(0),v(0))=(u^0,v^0)(@r1ut(0),@r2vt(0))=(@r1u^1,@r2v^1)[emailxa0protected],where @W is a bounded region in R^n whose boundary is partitioned into disjoint sets @C0, @C1. We prove that the dissipations given by the memory terms are strong enough to guarantee exponential (or polynomial) decay provided the relaxation functions also decay exponentially (or polynomially) and with the same rate of decay.
Differential Equations and Applications | 2000
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti
Abstract. This paper is concerned to the existence, uniqueness and uniform decay for the solutions of the coupled Klein-Gordon-Schrödinger damped equations n
Advances in Nonlinear Analysis | 2017
Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti; Irena Lasiecka; Claudete M. Webler
ipsi_{t} + Deltapsi + i |psi|^{2}psi + igammapsi = -phipsiinOmega times (0,infty)
Journal of Mathematical Analysis and Applications | 2003
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano
n
Applicable Analysis | 2012
Marcelo M. Cavalcanti; Irena Lasiecka; Daniel Toundykov
phi_{tt} - Deltaphi + mu^{2}phi + F(phi, phi_{t}) = beta |psi|^{2theta}inOmega times (0, infty)
Siam Journal on Control and Optimization | 2014
Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti
where ω is a bounded domain of Rn, n≤ 3, F : R2→R is a C1-function; γ, β; θ are constants such that γ, β > 0 and 1 ≤ 2θ≤ 2.
Archive | 2005
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano
Abstract We consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract form d d u2062 t u2062 ρ u2062 ( u t ) + A u2062 u t u2062 t + γ u2062 A θ u2062 u t + A u2062 u - ∫ 0 t g u2062 ( s ) u2062 A u2062 u u2062 ( t - s ) = 0 ,
ifip conference on system modeling and optimization | 2003
Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti; M.L. Santos
frac{d}{dt}rho(u_{t})+Au_{tt}+gamma A^{theta}u_{t}+Au-int_{0}^{t}g(s)Au(t% -s)=0,
Journal of Differential Equations | 2007
Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti; Irena Lasiecka
where A is a self-adjoint, positive definite operator acting on a Hilbert space H, ρ u2062 ( s )
Mathematical Methods in The Applied Sciences | 2001
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. Ferreira
{rho(s)}