Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V.N. Domingos Cavalcanti is active.

Publication


Featured researches published by V.N. Domingos Cavalcanti.


Differential Equations and Applications | 2000

Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti

Abstract. This paper is concerned to the existence, uniqueness and uniform decay for the solutions of the coupled Klein-Gordon-Schrödinger damped equations


Journal of Mathematical Analysis and Applications | 2003

On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano

i\psi_{t} + \Delta\psi + i\ |\psi|^{2}\psi + i\gamma\psi = -\phi\psi\in\Omega \times (0,\infty)


Archive | 2005

Global Solvability and Asymptotic Stability for the Wave Equation with Nonlinear Boundary Damping and Source Term

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano


Journal of Computational and Applied Mathematics | 2016

Numerical analysis for the wave equation with locally nonlinear distributed damping

V.N. Domingos Cavalcanti; J.H. Rodrigues; C. Rosier

\phi_{tt} - \Delta\phi + \mu^{2}\phi + F(\phi, \phi_{t}) = \beta\ |\psi|^{2\theta}\in\Omega \times (0, \infty)


Mathematical Methods in The Applied Sciences | 2001

Existence and uniform decay for a non‐linear viscoelastic equation with strong damping

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. Ferreira

where ω is a bounded domain of Rn, n≤ 3, F : R2→R is a C1-function; γ, β; θ are constants such that γ, β > 0 and 1 ≤ 2θ≤ 2.


Differential and Integral Equations | 2001

Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping

M. M. Cavalcanti; V.N. Domingos Cavalcanti; J. S. Prates Filho; J. A. Soriano

Abstract We study the global existence of solutions of the nonlinear degenerate wave equation (ρ⩾0) (∗) ρ(x)y″−Δy=0 in Ω × ]0,∞[, y=0 on Γ 1 × ]0,∞[, ∂y ∂ν +y′+f(y)+g(y′)=0 on Γ 0 × ]0,∞[, y(x,0)=y 0 , ( ρ y′)(x,0)=( ρ y 1 )(x) in Ω, where y′ denotes the derivative of y with respect to parameter t, f(s)=C0|s|δs and g is a nondecreasing C1 function such that k1|s|ξ+2⩽g(s)s⩽k2|s|ξ+2 for some k1,k2>0 with 0 0 if n=1,2. The existence of solutions is proved by means of the Faedo–Galerkin method. Furthermore, when ξ=0 the uniform decay is obtained by making use of the perturbed energy method.


Nonlinear Analysis-theory Methods & Applications | 2008

General decay rate estimates for viscoelastic dissipative systems

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; Patrick Martinez

We study the global existence and uniform decay rates of solutions of the problem


Applied Mathematics and Computation | 2004

Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; M.L. Santos


Journal of Mathematical Analysis and Applications | 1998

Existence and Exponential Decay for a Kirchhoff–Carrier Model with Viscosity

Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. S. Prates Filho; J. A. Soriano

\begin{array}{*{20}c} {(P)} & {\left\{ \begin{gathered} u_{tt} - \Delta u = \left| u \right|^\rho uin\Omega \times ]0, + \infty [ \hfill \\ u = 0on\Gamma _0 \times ]0, + \infty [ \hfill \\ \partial _\nu u + g\left( {u_t } \right) = 0on\Gamma _1 \times ]0, + \infty [ \hfill \\ u\left( {x,0} \right) = u^0 \left( x \right),u_t \left( {x,0} \right) = u^1 \left( x \right); \hfill \\ \end{gathered} \right.} \\ \end{array}


Differential and Integral Equations | 2002

Global existence and asymptotic stability for viscoelastic problems

M. M. Cavalcanti; V.N. Domingos Cavalcanti; To Fu Ma; J. A. Soriano

Collaboration


Dive into the V.N. Domingos Cavalcanti's collaboration.

Top Co-Authors

Avatar

Marcelo M. Cavalcanti

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

J. A. Soriano

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

J. S. Prates Filho

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

Fábio Natali

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

J.H. Rodrigues

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

C.A. Bortot

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

J. Ferreira

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

M. A. Jorge Silva

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

M.L. Santos

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar

Wellington J. Corrêa

Federal University of Technology - Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge