V.N. Domingos Cavalcanti
Universidade Estadual de Maringá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V.N. Domingos Cavalcanti.
Differential Equations and Applications | 2000
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti
Abstract. This paper is concerned to the existence, uniqueness and uniform decay for the solutions of the coupled Klein-Gordon-Schrödinger damped equations
Journal of Mathematical Analysis and Applications | 2003
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano
i\psi_{t} + \Delta\psi + i\ |\psi|^{2}\psi + i\gamma\psi = -\phi\psi\in\Omega \times (0,\infty)
Archive | 2005
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. A. Soriano
Journal of Computational and Applied Mathematics | 2016
V.N. Domingos Cavalcanti; J.H. Rodrigues; C. Rosier
\phi_{tt} - \Delta\phi + \mu^{2}\phi + F(\phi, \phi_{t}) = \beta\ |\psi|^{2\theta}\in\Omega \times (0, \infty)
Mathematical Methods in The Applied Sciences | 2001
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. Ferreira
where ω is a bounded domain of Rn, n≤ 3, F : R2→R is a C1-function; γ, β; θ are constants such that γ, β > 0 and 1 ≤ 2θ≤ 2.
Differential and Integral Equations | 2001
M. M. Cavalcanti; V.N. Domingos Cavalcanti; J. S. Prates Filho; J. A. Soriano
Abstract We study the global existence of solutions of the nonlinear degenerate wave equation (ρ⩾0) (∗) ρ(x)y″−Δy=0 in Ω × ]0,∞[, y=0 on Γ 1 × ]0,∞[, ∂y ∂ν +y′+f(y)+g(y′)=0 on Γ 0 × ]0,∞[, y(x,0)=y 0 , ( ρ y′)(x,0)=( ρ y 1 )(x) in Ω, where y′ denotes the derivative of y with respect to parameter t, f(s)=C0|s|δs and g is a nondecreasing C1 function such that k1|s|ξ+2⩽g(s)s⩽k2|s|ξ+2 for some k1,k2>0 with 0 0 if n=1,2. The existence of solutions is proved by means of the Faedo–Galerkin method. Furthermore, when ξ=0 the uniform decay is obtained by making use of the perturbed energy method.
Nonlinear Analysis-theory Methods & Applications | 2008
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; Patrick Martinez
We study the global existence and uniform decay rates of solutions of the problem
Applied Mathematics and Computation | 2004
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; M.L. Santos
Journal of Mathematical Analysis and Applications | 1998
Marcelo M. Cavalcanti; V.N. Domingos Cavalcanti; J. S. Prates Filho; J. A. Soriano
\begin{array}{*{20}c} {(P)} & {\left\{ \begin{gathered} u_{tt} - \Delta u = \left| u \right|^\rho uin\Omega \times ]0, + \infty [ \hfill \\ u = 0on\Gamma _0 \times ]0, + \infty [ \hfill \\ \partial _\nu u + g\left( {u_t } \right) = 0on\Gamma _1 \times ]0, + \infty [ \hfill \\ u\left( {x,0} \right) = u^0 \left( x \right),u_t \left( {x,0} \right) = u^1 \left( x \right); \hfill \\ \end{gathered} \right.} \\ \end{array}
Differential and Integral Equations | 2002
M. M. Cavalcanti; V.N. Domingos Cavalcanti; To Fu Ma; J. A. Soriano