Márcia Camponogara Fontana
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Márcia Camponogara Fontana.
European Journal of Pharmaceutics and Biopharmaceutics | 2011
Márcia Camponogara Fontana; João Felipe Peres Rezer; Daniela Bitencourt Rosa Leal; Ruy Carlos Ruver Beck
We developed a dermatological nanomedicine containing clobetasol propionate-loaded nanocapsules and evaluated its efficacy in a model of contact dermatitis after topical administration in rats. Hydrogels containing clobetasol propionate-loaded lipid-core nanocapsules or nanoemulsion (HG-CP-NC and HG-CP-NE, respectively) were prepared to evaluate the influence of the polymeric wall. They presented adequate pH values (5.50-6.50) and drug content (0.5 mg g(-1)) and their rheograms exhibited a non-Newtonian pseudoplastic behavior. The best in vitro drug release control was obtained for HG-CP-NC (1.03±0.11 μg cm(-2) h) compared to the HG-CP-NE (1.65±0.19 μg cm(-2) h) and the hydrogels containing nonencapsulated drug (HG-CP) (2.79±0.22 μg cm(-2) h). A significant increase in NTPDase activity was observed in lymphocytes for the group treated with 0.05% HG-CP-NC every other day compared to the group treated with 0.05% HG-CP every day using the in vivo model of contact dermatitis. The nanoencapsulation of clobetasol in nanocapsules led to a better control of the drug release from the semisolid nanomedicine and provided better in vivo dermatological efficacy.
Drug Development and Industrial Pharmacy | 2010
M.L. Marchiori; Greice Lubini; G. Dalla Nora; R.B. Friedrich; Márcia Camponogara Fontana; A.F. Ourique; M.O. Bastos; L.A. Rigo; Cristiane de Bona da Silva; Solange Bosio Tedesco; R.C.R. Beck
Context: Our group previously reported the development of dexamethasone-loaded polymeric nanocapsules as an alternative for topical dermatological treatments. Objective: Our study aimed to prepare and characterize a hydrogel containing this system to improve the effectiveness of the glucocorticoid for cutaneous disorders. Methods: For the antiproliferative activity assay, a dexamethasone solution and D-NC were tested on Allium cepa root meristem model. D-NC were prepared by the interfacial deposition of preformed polymer. Hydrogels were prepared using Carbopol Ultrez® 10 NF, as polymer, and characterized according to the following characteristics: pH, drug content, spreadability, viscosity, and in vitro drug release. Results and Discussion: Nanocapsules showed mean particle size and zeta potential of 201 ± 6 and −5.73 ± 0.42 nm, respectively. They demonstrated a lower mitotic index (4.62%) compared to free dexamethasone (8.60%). Semisolid formulations presented acidic pH values and adequate drug content (between 5.4% and 6.1% and 100% and 105%, respectively). The presence of nanocapsules in hydrogels led to a decrease in their spreadability factor. Intact nanoparticles were demonstrated by TEM as well as by dynamic light scattering (mean particle size < 300 nm). In vitro studies showed a controlled dexamethasone release from hydrogels containing the drug associated to the nanocapsules following the Higuchis squared root model (k = 20.21 ± 2.96 mg/cm2/h1/2) compared to the hydrogels containing the free drug (k = 26.65 ± 2.09 mg/cm2/h1/2). Conclusion: Taking all these results together, the hydrogel containing D-NC represent a promising approach to treat antiproliferative-related dermatological disorders.
Química Nova | 2008
Rossana B. Friedrich; Márcia Camponogara Fontana; Ruy Carlos Ruver Beck; Adriana Raffin Pohlmann; Silvia Stanisçuaski Guterres
The influence of drug concentration, oil phase, and surfactants on the characteristics of dexamethasone-loaded nanocapsules was investigated. The best formulations were obtained at dexamethasone concentrations of 0.25 and 0.50 mg.mL-1 (encapsulation efficiency: 80-90%; mean size: 189-253 nm). The type of oil phase influenced only the stability of dexamethasone-loaded nanocapsules. The association of polysorbate 80 and sorbitan monooleate provided a more stable formulation. Sunflower oil and sorbitan sesquioleate used for the first time as oil phase and surfactant for nanocapsules, respectively, have allowed obtaining suspensions with low mean size and narrow size distribution.
International Journal of Nanomedicine | 2014
Márcia Camponogara Fontana; Aline Beckenkamp; Andréia Buffon; Ruy Carlos Ruver Beck
Raloxifene hydrochloride (RH) is considered to be an antiproliferative agent of mammary tissue. The aim of this study was to investigate the effect of the encapsulation of RH in polymeric nanocapsules with anionic or cationic surface on its release profile and antiproliferative activity. They were prepared by interfacial deposition of preformed polymer, followed by wide physicochemical characterization. The in vitro RH release was assessed by the dialysis membrane method and the data analyzed by mathematical modeling. The antiproliferative effect on MCF-7 cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as well as by counting viable cells. They had high encapsulation efficiency, low polydispersity, and nanometric mean size. Nanocapsules prepared with Eudragit® RS100 and Eudragit® S100 presented positive and negative zeta potentials, respectively. Drug release studies demonstrated controlled release of RH from anionic nanocapsules, which could be explained due to a stronger interaction of the drug to these nanocapsules and the larger amount of entrapped drug. On the other hand, this control was not observed from cationic nanocapsules due to the larger amount of drug adsorbed onto their surface. MCF-7 cell viability studies and cell counting showed that RH-loaded Eudragit® RS100 nanocapsules promote the best antiproliferative activity after 24 hours of treatment, whereas the best activity was observed for RH-loaded Eudragit® S100 nanocapsules after 72 hours. Furthermore, the combined treatment of these formulations improved the antiproliferative effect during the entire treatment.
European Journal of Pharmaceutics and Biopharmaceutics | 2014
T.C. Beber; Diego Fontana de Andrade; Birthe Kann; Márcia Camponogara Fontana; Maike Windbergs; Ruy Carlos Ruver Beck
Topical glucocorticoids (TG) such as dexamethasone (DEX) have been used for decades for the treatment of skin diseases. However, TG present well-documented side effects and their delivery to the skin is often insufficient. Therefore, many efforts have been undergone to improve the amount of drug delivered to the skin and to reduce side effects at the same time. In this work, the feasibility of DEX-submicron polymeric particles (SP) prepared by vibrational spray-drying as an approach to overcome the challenges associated with the topical administration of this drug class was evaluated. DEX was homogeneously dispersed in the SP matrix, according to confocal Raman microscopy analysis. Drug-loaded SP were incorporated into the oil phase of oil-in-water emulsions (creams). The formulation containing polymeric submicron particles (C-SP) showed controlled drug release kinetics and a significant drug accumulation in skin compared to formulations containing non-polymeric particles or free drug. DEX accumulation in the stratum corneum was evaluated by tape stripping and a depot effect over time was observed for C-SP, while the formulation containing the free drug showed a decrease over time. Similarly, C-SP presented higher drug retention in epidermis and dermis in skin penetration studies performed on pig skin in Franz diffusion cells, while drug permeation into the receptor compartment was negligible. It was demonstrated, for the first time, the advantageous application of submicron polymeric particles obtained by vibrational spray-drying in semisolid formulations for cutaneous administration to overcome challenges related to the therapy with TG such as DEX.
Drug Development and Industrial Pharmacy | 2014
Taís Lusa Durli; Frantiescoli Anversa Dimer; Márcia Camponogara Fontana; Adriana Raffin Pohlmann; Ruy Carlos Ruver Beck; Guterres Ss
Abstract Spray drying is a technique used to produce solid particles from liquid solutions, emulsions or suspensions. Buchi Labortechnik developed the latest generation of spray dryers, Nano Spray Dryer B-90. This study aims to obtain, directly, submicron drug particles from an organic solution, employing this equipment and using dexamethasone as a model drug. In addition, we evaluated the influence of both the type of solvent and surfactant on the properties of the powders using a 32 full factorial analysis. The particles were obtained with high yields (above 60%), low water content (below 2%) and high drug content (above 80%). The surface tension and the viscosity were strongly influenced by the type of solvent. The highest powder yields were obtained for the highest surface tension and the lowest viscosity of the drug solutions. The use of ionic surfactants led to higher process yields. The laser diffraction technique revealed that the particles deagglomerate into small ones with submicrometric size, (around 1 µm) that was also observed by scanning electron microscopy. Interaction between the raw materials in the spray-dried powders was verified by calorimetric analysis. Thus, it was possible to obtain dexamethasone submicrometric particles by vibrational atomization from organic solution.
Redox Report | 2012
Jeandre Augusto dos Santos Jaques; João Felipe Peres Rezer; Jader B. Ruchel; Viviane do Carmo Gonçalves Souza; Kelly de Vargas Pinheiro; Karine Bizzi Schlemmer; Josiane Bizzi Schlemmer; Tatiana M.D. Bertoldo; Nara Maria Beck Martins; Claudia de Mello Bertoncheli; Márcia Camponogara Fontana; Ruy Carlos Ruver Beck; Daniela Bitencourt Rosa Leal
Abstract Objective An experimental animal model of contact dermatitis (CD) was used to investigate the effects of free and nanoencapsulated clobetasol propionate on the skin and on the oxidative profile of liver tissue. Methods Female Wistar rats were divided into six groups, each containing eight rats. The first group, control (C), was sensitized with solid vaseline. Group 2, (CD), was sensitized with 5% NiSO4. Groups 3 and 4 were sensitized with 5% NiSO4 and treated with free (FC) and nanoencapsulated (NC) clobetasol (0.42 mg/g), respectively, daily for 5 days. Group 5 was treated with nanoencapsulated clobetasol (0.42 mg/g) on days 1, 3, and 5 (C135) and group 6 received a hydrogel containing empty nanoparticles (NP) daily for 5 days. Thiobarbituric acid reactive substances (TBARS), carbonyl levels, non-protein sulfhydryl groups (NPSH) and catalase activity were measured in liver homogenates. Results A significant increase was observed in the levels of TBARS, NPSH, and catalase activity for the groups CD and NP. Discussion Our results suggest that both NiSO4 sensitization and NP administration induced oxidation of cellular lipids and activated the antioxidant enzyme catalase to protect from this damage. These results also indicated that daily treatment with the free and nanoencapsulated clobetasol, as well as treatment with the nanoencapsulated clobetasol every other day, were able to prevent these redox alterations and protect against histological damage.
Química Nova | 2010
Márcia Camponogara Fontana; Felipe K. Hurtado; Micheli Wrasse; Aline Augusti Boligon; Tarcieli Pozzebon Venturini; Clarice Madalena Bueno Rolim; Ruy Carlos Ruver Beck
A reversed-phase liquid chromatographic (LC) and ultraviolet (UV) spectrophotometric methods were developed and validated for the assay of bromopride in oral and injectable solutions. The methods were validated according to ICH guideline. Both methods were linear in the range between 5-25 μg mL-1 (y = 41837x - 5103.4, r = 0.9996 and y = 0.0284x - 0.0351, r = 1, respectively). The statistical analysis showed no significant difference between the results obtained by the two methods. The proposed methods were found to be simple, rapid, precise, accurate, and sensitive. The LC and UV methods can be used in the routine quantitative analysis of bromopride in oral and injectable solutions.
Journal of Biomedical Nanotechnology | 2009
Márcia Camponogara Fontana; Guterres Ss; Adriana Raffin Pohlmann; Ruy Carlos Ruver Beck
Journal of Nanoscience and Nanotechnology | 2010
Márcia Camponogara Fontana; Adriana Raffin Pohlmann; Guterres Ss; Ruy Carlos Ruver Beck