Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcin Cymborowski is active.

Publication


Featured researches published by Marcin Cymborowski.


Acta Crystallographica Section D-biological Crystallography | 2006

HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes

Wladek Minor; Marcin Cymborowski; Zbyszek Otwinowski; Maksymilian Chruszcz

A new approach that integrates data collection, data reduction, phasing and model building significantly accelerates the process of structure determination and on average minimizes the number of data sets and synchrotron time required for structure solution. Initial testing of the HKL-3000 system (the beta version was named HKL-2000_ph) with more than 140 novel structure determinations has proven its high value for MAD/SAD experiments. The heuristics for choosing the best computational strategy at different data resolution limits of phasing signal and crystal diffraction are being optimized. The typical end result is an interpretable electron-density map with a partially built structure and, in some cases, an almost complete refined model. The current development is oriented towards very fast structure solution in order to provide feedback during the diffraction experiment. Work is also proceeding towards improving the quality of phasing calculation and model building.


Nature | 2005

Double chromodomains cooperate to recognize the methylated histone H3 tail.

John F. Flanagan; Li-Zhi Mi; Maksymilian Chruszcz; Marcin Cymborowski; Katrina L. Clines; Youngchang Kim; Wladek Minor; Fraydoon Rastinejad; Sepideh Khorasanizadeh

Chromodomains are modules implicated in the recognition of lysine-methylated histone tails and nucleic acids. CHD (for chromo-ATPase/helicase-DNA-binding) proteins regulate ATP-dependent nucleosome assembly and mobilization through their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain. The Drosophila CHD1 localizes to the interbands and puffs of the polytene chromosomes, which are classic sites of transcriptional activity. Other CHD isoforms (CHD3/4 or Mi-2) are important for nucleosome remodelling in histone deacetylase complexes. Deletion of chromodomains impairs nucleosome binding and remodelling by CHD proteins. Here we describe the structure of the tandem arrangement of the human CHD1 chromodomains, and its interactions with histone tails. Unlike HP1 and Polycomb proteins that use single chromodomains to bind to their respective methylated histone H3 tails, the two chromodomains of CHD1 cooperate to interact with one methylated H3 tail. We show that the human CHD1 double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a hallmark of active chromatin. Methylammonium recognition involves two aromatic residues, not the three-residue aromatic cage used by chromodomains of HP1 and Polycomb proteins. Furthermore, unique inserts within chromodomain 1 of CHD1 block the expected site of H3 tail binding seen in HP1 and Polycomb, instead directing H3 binding to a groove at the inter-chromodomain junction.


Nature Methods | 2007

In situ proteolysis for protein crystallization and structure determination

Aiping Dong; Xiaohui Xu; A. Edwards; Changsoo Chang; Maksymilian Chruszcz; Marianne E. Cuff; Marcin Cymborowski; Rosa Di Leo; Olga Egorova; Elena Evdokimova; Ekaterina V. Filippova; Jun Gu; Jennifer Guthrie; Alexandr Ignatchenko; Andrzej Joachimiak; Natalie R. Klostermann; Youngchang Kim; Yuri Korniyenko; Wladek Minor; Qiuni Que; Alexei Savchenko; Tatiana Skarina; Kemin Tan; Alexander F. Yakunin; Adelinda Yee; Veronica Yim; Rongguang Zhang; Hong Zheng; Masato Akutsu; C.H. Arrowsmith

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.


Journal of Synchrotron Radiation | 2007

The many faces of radiation-induced changes

Dominika Borek; Stephan L. Ginell; Marcin Cymborowski; Wladek Minor; Zbyszek Otwinowski

During diffraction experiments even cryo-cooled protein crystals can be significantly damaged due to chemical and physical changes induced by absorbed X-ray photons. The character and scale of the observed effects depend strongly on the temperature and the composition of crystals. The absorption of radiation energy results in incremental regular changes to the crystal structure, making its impact on the process of solving the structure strongly correlated with other experimental variables. An understanding of all the dependencies is still limited and does not allow for a precise prediction of the outcome of a particular diffraction experiment. Results are presented of diffraction experiments performed under different experimental conditions. The influence of temperature and crystal composition on different characteristics of radiation damage is analyzed. The observed effects are discussed in terms of their impact on data processing and phasing procedures.


Acta Crystallographica Section D-biological Crystallography | 2010

Diffraction data analysis in the presence of radiation damage

Dominika Borek; Marcin Cymborowski; Mischa Machius; Wladek Minor; Zbyszek Otwinowski

Radiation-induced decay of crystal diffraction and additional specific chemical changes of macromolecules forming the crystal lattice are currently two of the main limiting factors in the acquisition of macromolecular diffraction data and macromolecular structure determination. Data-processing and phasing protocols are discussed in the context of radiation-induced changes.


Structure | 2012

Identification of unknown protein function using metabolite cocktail screening.

Igor A. Shumilin; Marcin Cymborowski; Olga Chertihin; Kula N. Jha; John C. Herr; Scott A. Lesley; Andrzej Joachimiak; Wladek Minor

Proteins of unknown function comprise a significant fraction of sequenced genomes. Defining the roles of these proteins is vital to understanding cellular processes. Here, we describe a method to determine a protein function based on the identification of its natural ligand(s) by the crystallographic screening of the binding of a metabolite library, followed by a focused search in the metabolic space. The method was applied to two protein families with unknown function, PF01256 and YjeF_N. The PF01256 proteins, represented by YxkO from Bacillus subtilis and the C-terminal domain of Tm0922 from Thermotoga maritima, were shown to catalyze ADP/ATP-dependent NAD(P)H-hydrate dehydratation, a previously described orphan activity. The YjeF_N proteins, represented by mouse apolipoprotein A-I binding protein and the N-terminal domain of Tm0922, were found to interact with an adenosine diphosphoribose-related substrate and likely serve as ADP-ribosyltransferases. Crystallographic screening of metabolites serves as an efficient tool in functional analyses of uncharacterized proteins.


Acta Crystallographica Section D-biological Crystallography | 2007

An extremely SAD case: structure of a putative redox‐enzyme maturation protein from Archaeoglobus fulgidus at 3.4 Å resolution

Olga Kirillova; Maksymilian Chruszcz; Igor A. Shumilin; Tatiana Skarina; Elena Gorodichtchenskaia; Marcin Cymborowski; Alexei Savchenko; A. Edwards; Wladek Minor

This paper describes the crystal structure of AF0173, a putative redox-enzyme maturation protein (REMP) from Archaeoglobus fulgidus. The REMPs serve as chaperones in the maturation of extracytoplasmic oxidoreductases in archaea and bacteria. The all-helical subunits of AF0173 form a dimer arising from the interaction of residues located in a funnel-shaped cavity on one subunit surface with an uncut expression tag from the other subunit. This cavity is likely to represent a binding site for the twin-arginine motif that interacts with REMPs. The conservation of the overall fold in AF0173 and bacterial REMPs as well as the presence of conserved residues in their putative binding sites indicates that REMPs act in a similar manner in archaea and bacteria despite their limited sequence similarity. A model of the binding of the twin-arginine motif by AF0173 is suggested. The solution of the AF0173 structure by the single anomalous dispersion method represents an extreme case of SAD structure determination: low resolution (3.4 A), the absence of NCS and the presence of only two anomalously scattering atoms in the asymmetric unit. An unusually high solvent content (73%) turned out to be important for the success of the density-modification procedures.


Journal of Structural and Functional Genomics | 2010

To automate or not to automate: this is the question

Marcin Cymborowski; Maria M. Klimecka; Maksymilian Chruszcz; Matthew D. Zimmerman; Igor A. Shumilin; Dominika Borek; K. Lazarski; Andrzej Joachimiak; Zbyszek Otwinowski; Wayne F. Anderson; Wladek Minor

New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected.


International Tables for Crystallography | 2012

Chapter 11.4 DENZO and SCALEPACK

Zbyszek Otwinowski; Wladek Minor; Dominika Borek; Marcin Cymborowski

This chapter uses the HKL package coordinate system to describe data algorithms and analysis. Data analysis makes specific assumptions which the collected data must, or at least should, satisfy. The description of data analysis and algorithms given here makes frequent references to the assumptions about the data and offers guidelines on how to make the experiment fulfil these assumptions. Topics covered include: diffraction from a perfect crystal lattice; autoindexing; coordinate systems; experimental assumptions; prediction of the diffraction pattern; detector diagnostics; multiplicative corrections (scaling); global refinement or post refinement; and graphical command centres.


Journal of Molecular Biology | 2011

Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

Maria M. Klimecka; Maksymilian Chruszcz; Jose Font; Tatiana Skarina; Igor A. Shumilin; Olena Onopryienko; Przemyslaw J. Porebski; Marcin Cymborowski; Matthew D. Zimmerman; Jeremy Hasseman; Ian J. Glomski; Lukasz Lebioda; Alexei Savchenko; A. Edwards; Wladek Minor

For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacteriums aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic_NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic_NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

Collaboration


Dive into the Marcin Cymborowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maksymilian Chruszcz

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zbyszek Otwinowski

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge